
25 Micron

TAAB 'Micron' Grids

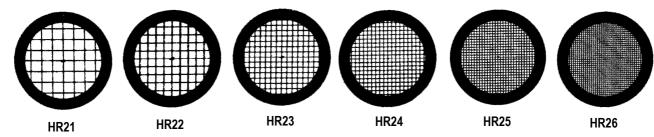
TAAB Grids offer unprecedented transmission without loss of support, have clean smooth bars with **specified** aperture sizes and are manufactured to very fine tolerances. Extremely high quality grids packed 100 grids per vial.

HT300

					ZO WIICH	<u> </u>		
Lines/inch	GT001/C = 100	Micron Copper	Material		um			Hole/Bar
Mesh	Style	Cat. No.	Copper	Pitch	Bar Width	Hole Width	Transmission	Ratio
203	100 MICRON	GT001/C	✓	125	25	100	64%	4:1
363	50 MICRON	GT002/C	✓	70	20	50	51%	2.5:1
604	25 MICRON	GT003/C	✓	42	17	25	35%	1.5:1
300	HT300	GT004/C	✓	84	7.5	76.5	83%	10.2:1

Maxtaform & Embra Grids

See also page 1.23 for Maxtaform New Value Range


Copper, Copper/Rhodium, Nickel and Maxtaform Gold grids are packed 100 grids per vial, Embra Gold grids and all other materials are in quantities of 25 grids per vial.

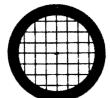
Apart from grids coated on one side with rhodium, all grids in copper, nickel and gold are matt on one side, bright on the other side.

All grids are approximately 25 micron thickness.

Square Mesh - High Grade Range 3.05mm - Maxtaform

Special attention should be drawn to this High Grade range of grids with the feature of reduced bar widths. These grids are available in Copper with one surface coated with inert Rhodium, noted for it's stability over long periods of time. These extra high quality grids eliminate tarnishing and give positive identification of one surface. The high quality range is completed with grids in Gold and Nickel.

Lines/inch	GM029/CR	= HR21 Cu/Rh		Mate	rials			um	
Mesh	Style	Cat. No.	С	N	CR	G	Pitch	Bar Width	Hole Width
75	HR21	GM029/	ı	✓	✓	✓	338	50	288
100	HR22	GM030/	ı	✓	✓	✓	254	41	213
150	HR23	GM031/	-	✓	✓	✓	165	34	131
200	HR24	GM032/	-	✓	✓	✓	127	24	103
300	HR25	GM033/	1	✓	✓	✓	84	23	61
400	HR26	GM034/		✓	✓	✓	63	20	43


Material Legend C = Pure Copper N = Pure Nickel G = Pure Gold CR = Copper with Rhodium flash on one

Embra Grids

Grids & Specimen Supports

Square Mesh - Economy Range 3.05mm - Maxtaform

The economy range of EM grids was designed to provide good quality square mesh grids at a very competitive price. The continual high demand for these grids means that it is still possible to manufacture at a low price without losing the inherent quality of Maxtaform grids.

ŀ	11		31	
	Γ	ī	iı	10

HF32

HF33

HF34


HF35

HF36

Lines/inch	GM011/0	C = HF31 Cu		Mate	erials			μm	
Mesh	Style	Cat. no.	С	N	CR	G	Pitch	Bar width	Hole width
75	HF31	GM011/	~	~	_	_	339	60	279
100	HF32	GM012/	~	~	_	_	254	50	204
150	HF33	GM013/	~	~	_	_	169	38	131
200	HF34	GM014/	~	~	_	_	127	26	101
300	HF35	GM015/	~	~	_	_	85	25	60
400	HF36	GM016/	~	~	_	_	64	23	41

Square Mesh - Plain & with Handles 3.05mm - Embra

Embra & Maxtaform grids are now manufactured by the same company

Copper and Nickel grids are packed 100 grids per vial, all other materials are in quantities of 25 grids/vial

Lines/inch	GM001/C	= 1G75 Cu			Ma	teri	als					μn	n Sim	nilar to
Mesh	Style	Cat. no.	С	N	G	M	S	T	Α	Pitch	Bar width	Hole width	Maxtaform	Handle/Tab
75	1G75	GE001/	~	~	~	~	~	~	~	339	55	284	HF31	_
75	3HG75	GE002/	~	~	~	~	~	~	~	339	55	284	HF32	~
100	!G100	GE003/	~	~	~	~	~	~	~	254	50	204	HF32	_
100	3HG100	GE004/	~	~	_	_	_	_	_	254	50	204	HF33	~
150	1G150	GE005/	~	~	~	~	~	~	~	169	44	125	HF33	_
150	3HG150	GE006/	~	~	~	_	_	_	_	169	44	125	HF34	~
200	1G200	GE007/	~	~	~	~	~	~	~	127	37	90	HF34	_
200	3HG200	GE008/	~	~	~	~	~	~	_	127	37	90	HF35	~
300	1G300	GE009/	~	~	~	~	~	~	_	85	31	54	HF35	_
300	3HG300	GE010/	~	~	~	~	~	~	_	85	31	54		>

G = Pure Gold

CR = Copper with Rhodium flash on one face

Material Legend C = Pure Copper N = Pure Nickel

S = Stainless Steel **T** = Tungsten

A= Aluminium

M= Molybdenum

Phone: +44 (0) 118 981 7775 Fax: +44 (0) 118 981 7881

E-mail: sales@taab.co.uk www.taab.co.uk

Slotted & Hole Range 3.05mm - Maxtaform

HF49

HF47

HF48

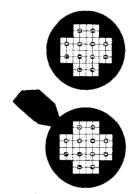
Lines/inch	GM025N =	HF29 Nickel		Mate	erials		μm		
Mesh	Style	Cat. no.	С	N	CR	G	Pitch	Bar width	Hole width
_	HF49	GM025/	~	~	_	_	_	_	2000 x 1000
_	HF50	GM026/	~	~	_	_	_	_	1500 x 200
_	HF51	GM027/	~	~	_	_	_	_	500 x 200
_	HF57	GM023/	~	~	_	_	_	_	1000
_	HF48	GM024/	~	~	_	_	_	_	6000

Hexagonal Mesh - Plain & with Handles 3.05mm - Embra

Lines/inch	GM015/C	= 8G90 Cu		ı	Vlate	rials	3				μı	n
Mesh	Style	Cat. no.	С	N	G	M	S	T	Pitch	Bar width	Hole width	Handle/Tab
90	8G90	GE015/	~	~	~	_	_	_	272	48	_	_
90	8HG90	GE016/	~	~	_	_	_	_	272	48	_	~
135	8G135	GE017/	~	~	~	_	_	_	186	36	_	_
135	8HG135	GE018/	~	_	_	_	_	_	186	36	_	>
180	8G180	GE019/	~	~	~	_	_	_	138	28	_	_
180	8HG180	GE020/	~	~	~	_	_	_	138	28	_	~
270	8G270	GE021/	~	~	~	_	_	_	90	24	_	_
270	8HG270	GE022/	~	~	~	_	_	_	90	24	_	>
360	8G360	GE023/	~	~	~	_	_	_	67	26	_	_
360	8HG360	GE024/	~	~	~	_	_	_	67	26	_	>

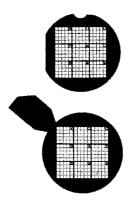
Material Legend **C** = Pure Copper M= Molybdenum

N = Pure Nickel

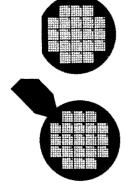

G = Pure Gold S=Stainless Steel T= Tungsten

CR = Copper with Rhodium flash on one face

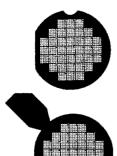
1


Grids & Specimen Supports

Special Patterns - Plain & with Handles 3.05mm - Embra


Reference identification of each of twelve grid squares

Lines/inch	GE025/C =	= 7FG100 Cu			Mate	rials					μm	
Mesh	Style	Cat. no.	С	N	G	M	S	T	Pitch	Bar width	Hole width	Handle/ Tab
100	7FG100	GE025/	~	~	_	_	_	_	250	_	_	_
100	7HFG100	GE026/	>	~	_	_	_	_	250	_	_	>


Reference identification of each of nine grid squares

Lines/inch	GE027/C =	= 7FG200 Cu			Mate	rials					μm	
Mesh	Style	Cat. no.	С	N	G	M	S	T	Pitch	Bar width	Hole width	Handle/ Tab
200	7FG200	GE027/	•	•	~	_	_	_	125	_	_	_
200	7HFG200	GE028/	>	•	~	_	_	_	125	_	_	>

Reference identification of each of twenry one grid squares

Lines/inch	GE029/C =	= 7FG300 Cu			Mate	rials					μm	
Mesh	Style	Cat. no.	С	N	G	M	S	T	Pitch	Bar width	Hole width	Handle/ Tab
300	7FG300	GE029/	•	•	•	_	_	_	83	_	_	_
300	7HFG300	GE030/	•	•	•	_	_	_	83	_	_	~

Reference identification of each of thirty seven squares

Lines/inch	GE031/C =	= 7FG400 Cu			Mate	rials					μm	
Mesh	Style	Cat. no.	С	N	G	M	S	T	Pitch	Bar width	Hole width	Handle/ Tab
400	7FG400	GE031/	~	~	~	_	_	_	62	_	_	_
400	7HFG400	GE032/	~	>	~	_	_	_	62	_	_	>

Material Legend

C = Pure Copper **N** = Pure Nickel

G = Pure Gold

CR = Copper with Rhodium flash on one face

S = Stainless steel T = Tungsten

Parallel Lines with Dividers

Grids & Specimen Supports

3.05mm - Maxtaform

HF43

HF44

HF45

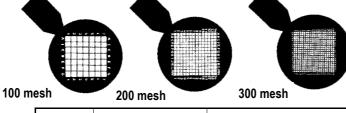
HF46

Parallel with single bar crossed at 90° through the centre of the grid

Lines/incl	n GM021/C	= (HF45 Cu)	Mater	ials			μm		
Mesh	Style	Cat. no.	С	N	CR	G	Pitch	Bar width	Hole width
150	HF45	GM019/	~	~	_	-	165	34	131
200	HF46	GM020/	~	~	_	-	127	24	103

Parallel

Lines/incl	h GM021/C	(= HF45 Cu)	Mate	rials			μm		
Mesh	Style	Cat. no.	С	N	CR	G	Pitch	Bar width	Hole width
150	HF45	GM021/	~	~	-	-	165	34	131
200	HF46	GM022/	~	~	_	-	127	24	103



HR27

HF41

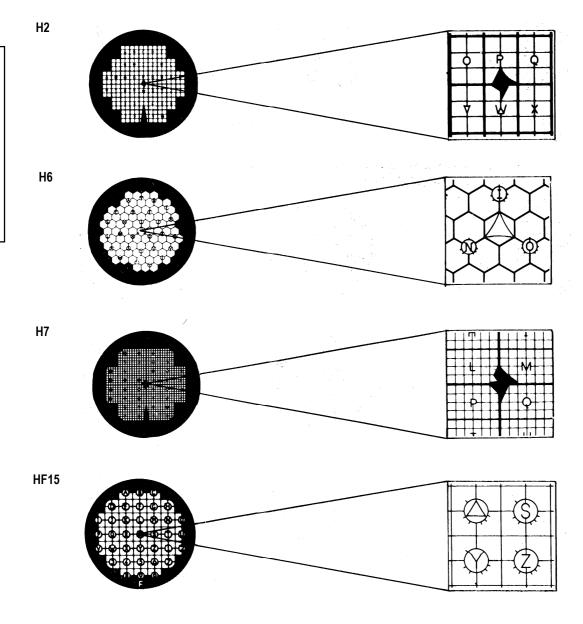
HF42

Lines/inch	n GM021/C	= (HF45 Cu)	Mater	ials			μm		
Mesh	Style	Cat. no.	С	N	CR	G	Pitch	Bar width	Hole width
300-75	HR27	GM035/	_	~	~	~	338x84	50 & 83	288x61
75-300	HF41	GM017/	~	~	_	_	338x84	60 & 25	278x59
100-400	HF44	GM018/	~	~	_	_	254x63	50 & 23	204x40

	200 11163	711				-		
Lines/inch	GE043/C = 71	HX100 Cu			Mate	rials		
Mesh	Style	Cat.no.	С	N	G	М	S	T
100	7HX100	GE043/	>	>	_	_	ı	_
200	7HX200	GE044/	>	>	-	_	ı	_
300	7HX300	GE045/	>	~	-	_	-	_
_	9G20H	GE046/	>	_	-	_	-	-

9G20H

- Material Legend C = Pure Copper N = Pure Nickel
- G = Pure Gold


S = Stainless Steel **T** = Tungsten

CR = Copper with Rhodium flash on one face

Reference Range 3.05mm - Maxtaform

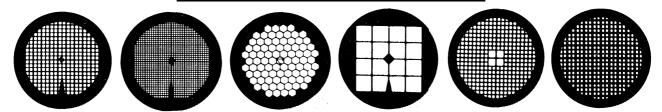
It was Graticules who introduced reference patterns to optical microscopy and carried the advantage into electron microscopy by being the first to make reference grids. The four patterns illustrated will provide the microscopist with a wide choice to suit their particular needs.

Maxtaform Grids

Lines/inch	GM006	/C = H7 Cu		Mate	rials			μ	ım
Mesh	Style	Cat. no.	С	N	CR	G	Pitch	Bar width	Hole width
200	H2	GM002/	~	~	_	>	127	19	108
_	H6	GM005/	~	~	_	>	235	25	210
400	H7	GM006/	~	~	_	>	63	12	51
135	HF15	GM010/	~	~	_	>	188	20	168

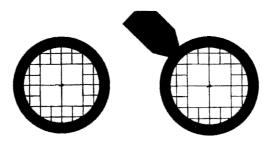
Material Legend C = Pure Copper N = Pure Nickel G = Pure Gold CR = Copper with Rhodium flash on one face

1


HF52

axtaform Grids

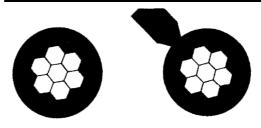
mbra Grids


Grids & Specimen Supports

Specialist Range 3.05mm - Maxtaform

HF14 H9 **H5** Lines/inch GM001/C = H1 Cu **Materials** μm Mesh Style Cat.no. C N CR G Pitch Bar width Hole width 200 H1 GM001/ 127 15 112 V 400 H4 GM003/ 63 12 51 Н5 GM004/ 235 25 210 25 50 Н9 GM007/ 508 483 HF14 127 22 105 200 GM009/ 72 100 HF52 GM028/ 254/127 47/25

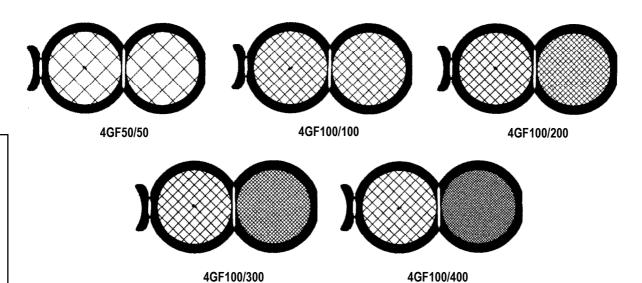
Freeze Fracture Grid 3.05mm - Embra


For 200 mesh Freeze Fracture grid - Please see HF14 above.

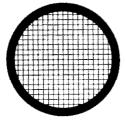
Freeze

H1

Lines/incl	,			rials					μm			
Mesh	Style	Cat. no.	С	N	G	М	S	Т	Pitch	Bar width	Hole width	Handle/ Tab
75	5G75FF	GE033/	~	~	>	-	ı	_	339	55	284	_
75	5HG75FF	GE034/	>	>	1	_	1	_	339	55	284	>


7 Hexagon Grid 3.05mm - Embra

Lines/inch	n GE013/C =	= 1G7Hex Cu	Mate	rials					μm			
Mesh	Style	Cat. no.	С	N	G	M	S	Т	Pitch	Bar width	Hole width	Handle/ Tab
-	1G7Hex	GE013/	~	~	~	-	-	_	-	-	-	-
_	3G7Hex	GE014/	~	>	_	_	-	-	-	-	-	~

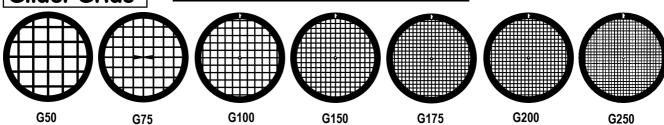

Material Legend C = Pure Copper N = Pure Nickel G = Pure Gold CR = Copper with Rhodium flash on one

Folding Grids 3.05mm - Embra

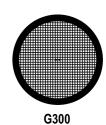
Lines/inch	GGEO31/C =	= 4GF50/50 Cu			Mate	rials					μm
Mesh	Style	Cat. no.	С	N	G	M	S	Т	Pitch	Bar width	Hole width
50-50	4GF50/50	GE035/	~	~	~	_	_	_	508-508	83-83	425-425
100-100	4GF100/100	GE036/	~	~	~	~	~	•	254-254	65-65	189-189
100-200	4GF100/200	GE037/	~	~	~	~	~	•	254-127	65-37	189-90
100-300	4GF100/300	GE038/	~	~	~	_	~	~	254-85	65-28	189-57
100-400	4GF100/400	GE039/	~	~	_	_	_	_	254-64	65-26	189-38

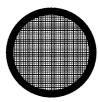
Embra- Tissue Processing Screen - Diameter 3.8mm

Lines/inch	GGEO31/C	= 4GF50/50 Cu		Mate	rials			μm		Transmission
Mesh	Style	Cat. no.	С	N	CR	G	Pitch	Bar width	Hole width	%
150	6G150	GE040/	~	~	_	_	170	44	126	55
200	6G200	GE041/	~	~	_	_	127	37	90	50
300	6G300	GE042/	~	~	_	_	85	28	57	45

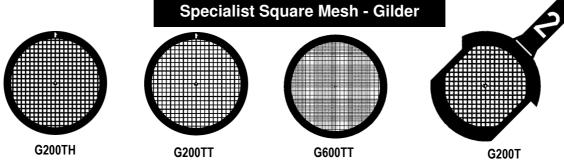

Please note that these screens are 3.8mm diameter

Material Legend C = Pure Copper N = Pure Nickel **G** = Pure Gold **CR** = Copper with Rhodium flash on one face S=Stainless Steel T= Tungsten M= Molybdenum


1


Grids & Specimen Supports

Gilder Grids Standard Square Mesh - Gilder

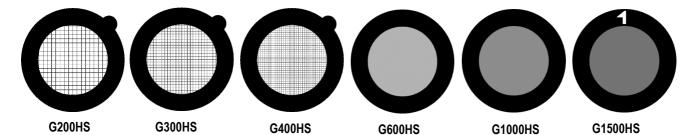

Lines/inch	GG001/C =	G50 Cu			Mate	rials				μm	
Mesh	Style	Cat.no.	С	CG	N	NG	Р	G	Pitch	Bar width	Hole width
50	G50	GG001/	~	~	~	~	~	~	500	80	420
75	G75	GG002/	~	~	~	~	~	~	340	55	285
100	G100	GG003/	~	~	~	~	~	~	250	45	205
150	G150	GG004/	~	~	~	~	~	~	165	40	125
175	G175	GG070/	~	~	~	~	~	~	145	37	108
200	G200	GG005/	~	~	~	~	~	~	125	35	90
250	G250	GG071/	~	~	~	~	~	~	100	30	70
300	G300	GG007/	~	~	~	~	~	~	83	25	58

G200 & G100 grids now available in Molybdenum GG005/M (200)

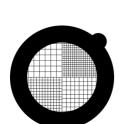
G400

_ines/inch	GG001/C = G	50 Copper	Mater	ials					μm		
Mesh	Style	Cat. no.	С	CG	N	NG	Р	G	Pitch	Bar width	Hole width
A thicker	ed version of	the standard 0	3200 with	asymet	tric cer	tre and	a mark	in the r	im for precis	e orientation	in the TEM
200	G200TH	GG046/	~	~	~	~	~	~	125	40	85
			Th	ick-Thir	n bar s	quare m	nesh		1		1
200	G200TT	GG046/	~	~	~	~	~	~	125	35-25	95
600	G600TT	GG009/	~	~	~	~	~	~	42	16-10	30
Handle g		e has been desi nt of attachment									netal at the
200	G200TT	GG038/	~	~	~	~	~	~	125	40	85

Material Legend C = Pure Copper N = Pure Nickel G = Pure Gold P = Copper with Palladium flash on one face CG = Copper with pure Gold flash on one side NG = Nickel with pure Gold flash on one side

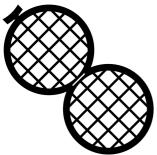

Phone: +44 (0) 118 981 7775

1

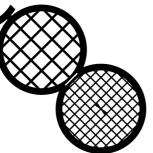

Grids & Specimen Supports

Gilder Grids

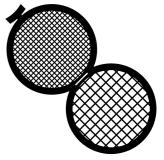
Fine Bar Square Mesh - Gilder



GVHS


Mesh	Style	Cat.no.	С	CG	N	NG	Р	G	Pitch	Bar width	Hole width
200	G200HS	GG018/	>	-	~	~	_	~	125	12	113
300	G300HS	GG020/	>	-	~	~	_	~	83	10	73
400	G400HS	GG022/	>	~	~	~	_	~	62	8	54
600	G600HS	GG069/	>	~	~	~	-	~	42	5	37
1000	G1000HS	GG039/	>	~	~	~	_	~	25	6	19
1500	G1500HS	GG062/	>	~	~	~	_	~	16.5	5	11.5
2000	G2000HS	GG063/	>	~	~	~	_	~	12.5	5	7.5
200-250 150-300	GVHS	GG025/	>	~	•	~	_	~	125-62 165-83	10-10 10-10	115-52 115-73

The handle has been designed for ease of handling and is eaily removed. The thickness of metal at the point of attachment of the handle to the rim is reduced to allow the handle to be bent up to 90°


Double/Folding Grids - Gilder

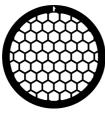
GD50/50

GD50/100

GD100/100

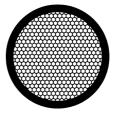
GD100/200

Used mostly in metallurgical applications for supporting thin metal foils. The grids have a curved securing tab which folds to the curvature of the 'sandwiched' grid.


Lines/inch	GG034/C= G[050/50 Cu			Mate	erials				μm	
Mesh	Style	Cat.no.	С	CG	N	NG	Р	G	Pitch	Bar width	Hole width
50-50	GD50/50	GG034/	>	~	~	~	~	~	500-500	70-70	430-430
50-100	GD50/100	GG035/	>	~	~	~	~	~	500-250	70-55	430-195
100-100	GD100/100	GG036/	>	~	~	~	~	~	250-250	50-50	200-200
100-200	GD100/200	GG037/	>	~	~	~	~	~	250-125	200-85	200-85

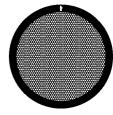
Material Legend: C = Pure Copper N = Pure Nickel G = Pure Gold P = Copper with Palladium flash on one face CG = Copper with pure Gold flash on one side NG = Nickel with pure Gold flash on one side

Standard Hexagonal Mesh - Gilder



G50HEX

G75HEX



G200HEX G300HEX

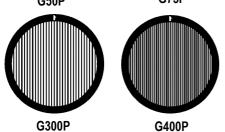
Lines/inch	GG057/N = G	50 Hex Nickel		Materials					μm		
Mesh	Style	Cat.no.	С	CG	N	NG	Р	G	Pitch	Bar width	
50	G50HEX	GG057/	~	~	~	~	~	~	500	70	
75	G75HEX	GG058/	~	~	~	~	~	~	340	50	
100	G100HEX	GG016/	~	~	~	~	~	~	250	35	
150	G150HEX	GG059/	~	~	~	~	~	~	165	35	
200	G200HEX	GG017/	~	~	~	~	~	~	125	25	
300	G300HEX	GG060/	~	~	~	~	~	~	83	25	
400	G400HEX	GG061/	~	~	~	~	~	~	62	25	

G100HEX

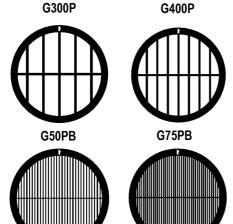
G400HEX

Gilder Grids

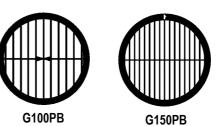
Fine Bar Hexagonal Mesh - Gilder



G600HHS G600HHS


Lines/inch	GG057/N = G	50 Hex Nickel	Materials						μm	
Mesh	Style	Cat.no.	С	CG	N	NG	Р	G	Pitch	Bar width
200	G200HH	GG019/	>	_	>	\	_	>	125	12
300	G300HH	GG021/	~	_	~	~	_	~	83	10
460	G400HH	GG023/	~	_	~	~	_	~	57	8
698	G600HH	GG024/	~	_	•	~	_	~	37	8
600	G600HHS	GG072/	~	~	~	~	_	~	42	5
600	G600HSS	GG069/	~	_	~	~	_	~	42	5

Material Legend C = Pure Copper N = Pure Nickel G = Pure Gold P = Copper with Palladium flash on one face CG = Copper with pure Gold flash on one side NG = Nickel with pure Gold flash on one side



Parallel bar grids have a wide variety of uses and are especially useful for obtaining sequential information from ribbons of sections. The grids have a mark in the rim to allow for precise orientation in the EM

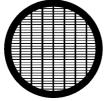
G300PB

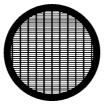
G400PB

Similar to the parallel bar series except for a single bar which crosses at 90° through the centre of the grid. The G100PB and G200PB grid types have reverse arrow centre mark to allow the four quadrants of the grid to be located. The grids have a mark in the rim to allow for precise orientation in the EM

Lines/inch	GG047/G = G	50P Gold	Materials					μm		
Mesh	Style	Cat.no.	С	CG	N	NG	Р	G	Pitch	Bar width
50	G50P	GG047/	>	~	~	~	~	~	500	84
75	G75P	GG048/	>	~	~	~	~	~	340	70
100	G100P	GG010/	>	~	~	~	~	~	250	65
150	G150P	GG049/	>	~	~	~	~	~	165	50
200	G200P	GG011/	>	~	~	~	~	~	125	45
300	G300P	GG050/	>	~	~	~	~	~	83	35
400	G400P	GG051/	>	~	~	~	~	~	62	40

Parallel with cross bar at 90° through the centre of the grid

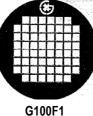

50	G50PB	GG052/	>	>	\	>	>	>	500	84
75	G75PB	GG053/	>	>	\	>	>	>	340	70
100	G100PB	GG012/	>	~	~	~	~	~	250	65
150	G150PB	GG054/	>	~	~	~	~	~	165	50
200	G200PB	GG013/	>	~	~	~	~	~	125	45
300	G300PB	GG055/	>	~	~	~	~	~	83	35
400	G400PB	GG056/	>	~	~	~	~	~	62	40


Material Legend C = Pure Copper N = Pure Nickel G = Pure Gold P = Cu with Palladium flash on one face CG = Copper with pure Gold flash on one side NG = Nickel with pure Gold flash on one side

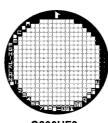
1.12

Gilder Grids

Grids & Specimen Supports


G75/300

G100/400


Lines/inch	GG0014/N = 0	375/300 Nickel			Mate	erials			μ	m
Mesh	Style	Cat.no.	С	CG	N	NG	Р	G	Pitch	Bar width
75-300	G75/300	GG014/	>	~	~	~	>	~	340-83	50-25
100-400	G100/400	GG015/	>	~	~	~	>	~	250-62	45-25

G100F see

Finder Grids

G200F1

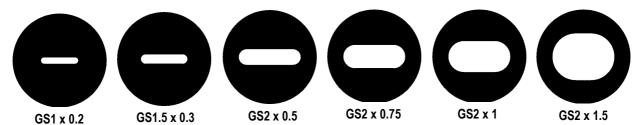
G200F2

G200HF3

G200F4

Lines/inch	GG0014/N = 0	375/300 Nickel			Mate	erials			μ	m
Mesh	Style	Cat.no.	С	CG	N	NG	Р	G	Pitch	Bar width

Alpha-numeric identification of each of six grid squares


200	G200F1	GG032/	~	~	~	~	~	~	125	40-28
-----	--------	--------	---	---	---	---	---	---	-----	-------

Alpha-numeric identification of each of nine grid squares

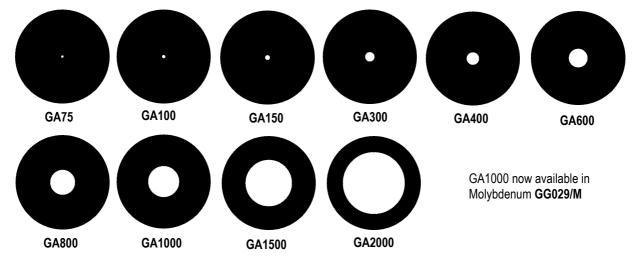
200	G200F2	GG033/	~	~	~	~	~	~	125	25-12
200	G200HF3	GG064/	~	~	~	~	_	~	125	

Alpha-numeric identification with letter ref. along horizontal and number ref. along vertical axis

200/250	G200F4	GG073/	~	~	~	~	~	~	125-105	20-15
---------	--------	--------	---	---	---	---	---	---	---------	-------

Lines/inch	GG014/N = G75/	300 Nickel			Mate	rials				um	
Mesh	Style	Cat. No.	С	CG	N	NG	Р	G	Pitch	Bar Width	
_	GS1 x 0.2	GG065/	✓	✓	√	✓	√	√	1	_	
_	GS1.5 x 0.3	GG066/	✓	✓	✓	✓	✓	✓	_	_	
_	GS2 x 0.5	GG031/	✓	✓	✓	✓	✓	✓	_	_	
_	GS2 x 0.75	GG067/	✓	✓	✓	✓	✓	✓	_	_	
_	GS2 x 1	GG030/	✓	✓	✓	✓	✓	✓	_	_	
_	GS2 x 1.5	GG068/	✓	✓	✓	✓	✓	✓		_	

GS2x1 now available in Molybdenum GGÓ30/M


Material Legend C = Pure Copper **N** = Pure Nickel **G** = Pure Gold P = Copper with Palladium flash on one face CG = Copper with pure Gold flash on one side NG = Nickel with pure Gold flash on one side

E-mail: sales@taab.co.uk www.taab.co.uk

Aperture Grids

Gilder Grids

Grids & Specimen Supports

Lines/inch	GG040/C = GA	A75 Copper	Materials							um	
Mesh	Style	Cat. No.	С	CG	N	NG	Р	G	Pitch	Bar Width	Hole Width
_	GA75	GG040/	✓	✓	>	✓	>	>	1	_	75
_	GA100	GG041/	✓	✓	>	✓	>	>	1	_	100
_	GA150	GG042/	✓	✓	✓	✓	✓	✓	_	_	150
_	GA300	GG043/	✓	✓	>	✓	~	>	1	_	300
_	GA400	GG026/	✓	✓	\	✓	~	>	ı	_	400
_	GA600	GG027/	✓	✓	✓	✓	✓	✓	1	_	600
_	GA800	GG028/	✓	✓	✓	✓	✓	✓	-	_	800
_	GA1000	GG029/	✓	✓	✓	✓	✓	✓	_	_	1000
_	GA1500	GG044/	✓	✓	√	✓	✓	✓		_	1500
_	GA2000	GG045/	✓	✓	✓	✓	✓	✓		_	2000

Carbon Nylon Grid

Carbon coated nylon 200 mesh grid 3.05mm diameter, used for low background support membranes. These grids are of woven construction and may exhibit mechanical instability if subjected to an intense electron beam.

G077 Carbon nylon grid tube of 25

Carbon Composite Grid

These are rigid carbonaceous grids of 75 mesh. They have no titanium contamination and are thermally stable.

G138 Carbon composite 75 mesh grid each

Material Legend C = Pure Copper N = Pure Nickel G = Pure Gold P = Copper with Palladium flash on one face CG = Copper with pure Gold flash on one side NG = Nickel with pure Gold flash on one side

1.14

Synap Tek Grids

These ultra-rigid grids have a thickness of $0.114 \, \text{mm}$ and are made from a beryllium-copper alloy with many features and formvar film stress is also materially reduced. The grids are very stable in the electron beam, contamination free and reusable after cleaning. All grids are $3.05 \, \text{mm}$ diameter, with a $2 \, \text{x}$ 1mm slot ($0.5 \, \text{x}$ 2mm are also available)

DOT

5 Types with Special Markings

The DOT variety has two clear dots on one side, visible to the naked eye, so that the side of the grid being used is easily identified. Another variety NUM has random numbers on one side in place of the dots.

NUM

Undercut

An undercut notch on one side makes the grid easy to be picked up with tweezers. When the NOTCH is together with DOT or NUM, the notch is always on the reverse side of the grid to the markings.

NOTCH

The GILDED grids are completely Gold-Plated, suitable for immunology research, autoradiography or any other special application.

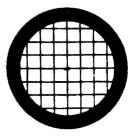
G089	Synap Tek DOT grid	tube of 100
G090	Synap Tek NUM grid	tube of 100
G091	Synap Tek NOTCH grid	tube of 100
G092	Synap Tek NOTCHDOT grid	tube of 100
G093	Synap Tek NOTCHNUM grid – random numbers	tube of 100
G094	Synap Tek NOTCHNUM gold grid - random	tube of 100

NOTCHDOT

NOTCHNUM

Aluminium and Beryllium Grids

These materials with low atomic number elements are especially useful for X-ray analysis to reduce the background counts.

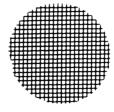

Aluminium Grids

A selection of etched aluminium grids are shown on page 1.2

Beryllium Grids

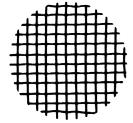
For the most critical work requiring the lowest background count, beryllium offers the best choice. All are 3.05mm diameter.

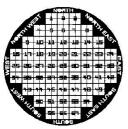
G080	Beryllium 75 mesh grid	each
G115	Beryllium 150 mesh grid	each
G116	Beryllium 2 x 1mm slot grid	each
G169	Beryllium 200 mesh grid	each



Stainless Steel Grids

A selection of etched stainless steel grids are shown on page 1.2 and 1.8


Also available are 200 mesh 3mm diameter grids stamped out from woven mesh, these provide an economical alternative to etched grids.


G170 Stainless steel 200 mesh grid tube of 100

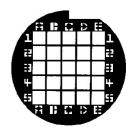
1

Grids & Specimen Supports

When ordering please specify material. C=Cu N=Ni G=Au. e.g. G271/C for copper, /N for nickel and /G for gold.

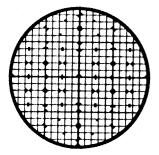
Molybdenum Grids

A selection of etched molybdenum grids are shown on **page 1.2** and **1.8**. Also available are 100 mesh 3mm diameter grids stamped out from woven mesh, these provide an economical alternative to etched grids.


G171 Molybdenum 100 mesh grid

tube of 100

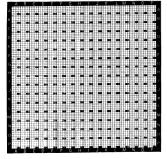
Finder Grids in Cu, Ni, Au


Two grids designed to aid in identification and localisation of SEM specimens when placed on SEM stubs. The SEMF2 is for particles and suspensions whilst SEMF3 uses an alpha numeric index allowing up to 25 predetermined specimens to be fixed and located in the SEM.

G271/ Type SEMF2. Larger cells are identified using numbers from 1<57. Each large cell is subdivided into 4, making a total of 228 identifiable cells. Overall diameter 10mm, thickness ~50µm. 10 grids/vial, 5 for gold.

Type SEMF3

G272/ Type SEMF3. 25 cells are identified by their alpha numeric position. The asymmetric cut-out in the rim enables the right view to be obtained when placing on a SEM stub. Overall diameter 10mm, thickness \sim 50 μ m. 10 grids/vial, 5 for gold.

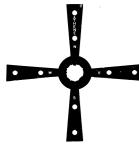


Finder Grids for SEM

See also page 10.10

A valuable tool for analytical studies. The grids are 10mm diameter and can be placed directly on the SEM stub surface and used to identify the area of interest.

G135/C SEM finder grids, Cu tube of 25
G135/N SEM finder grids, Ni tube of 25



LM-SEM Locator Grid

A large locator grid approximately 65 x 65mm with small squares of 0.8mm. Delineation of 5 x 5 small squares gives unique area labelling which is very useful when comparing LM and SEM images.

G167/C LM-SEM grid, Cu each G167/N LM-SEM grid, Ni each

SEM specimens when relatively large can have a rather small area of interest for viewing. This type of grid has been designed to assist in finding the area of interest.

A central annulus surrounds the required area, with small pointer for orientation purposes. The long arms are tapered to show the direction in which to move, and are identified by N,S,E,W. Two small markers of lengths $500\mu m$ and $300\mu m$ are incorporated in the central ring.

G168 SEM finder grid tube of 5

Finder Grid for TEM Specimens G100F1

Each of the 60 grid squares is identified using a base two binary numbering system. The six binary number symbols appear on the bottom grid bars along the horizontal axis. Zero (0) is represented by a short pillar and one (1) by a longer pillar. The inset view shows grid square nine (9) where the long pillar at the right represents decimal 1 and the long pillar fourth from the right decimal 8.

Overall diameter 3.05mm Mesh 100 lines/inch Pitch 250 µm Bar width vert axis 40µm

Hole width vert axis 210µm

GG074/C TEM finder grid G100F1 Cu (100)

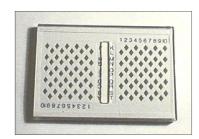
GG074/G G100F1 Au (50) **GG074/N** G100F1 Ni (100) **GG074/P** G100F1 Cu/Pd (100)

1.16

TAAB Filmed/Coated Grids

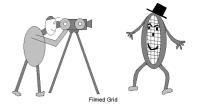
Formvar Support Films

Quantity			(Copper Grid	
	100 mesh	200 mesh	300 mesh	400 mesh	
25	F231/025	F218/025	F232/025	F233/025	
50	F231/050	F218/050	F232/050	F233/050	
100	F231/100	F218/100	F232/100	F233/100	
	Nickel Grid				
25	F231/N025	F218/N025	F232/N025	F233/N025	
50	F231/N050	F218/N050	F232/N050	F233/N050	
100	F231/N100	F218/N100	F232/N100	F233/N100	
	Gold Grid				
25	F231/G025	F218/G025	F232/G025	F233/G025	
50	F231/G050	F218/G050	F232/G050	F233/G050	


TAAB can offer high quality support films of formvar, formvar/carbon or pure carbon on a wide range of grid styles and makes depending on customer choice.

TAAB **carbon** films are limited to a maximum mesh size of 200 as our experience indicates that larger mesh sizes overstress the carbon and result in splits, tears or other problems either in manufacture, transit or the EM.

Plain **formvar** or **formvar/carbon** can be placed on most types of grid. Please ask for quotation if not listed.


Formvar/Carbon Support Films

Quantity	Copper Grid					
	100 mesh	100Hex	200 mesh	300 mesh	400 mesh	2 x 1mm
25	F200/025	F180/025	F077/025	F196/025	F098/025	F144/025
50	F200/050	F180/050	F077/050	F196/050	F098/050	F144/050
100	F200/100	F180/100	F077/100	F196/100	F098/100	F144/100
Nickel Grid						
25	F200/N025	F180/N025	F077/N025	F196/N025	F098/N025	F144/N025
50	F200/N050	F180/N050	F077/N050	F196/N050	F098/N050	F144/N050
100	F200/N100	F180/N100	F077/N100	F196/N100	F098/N100	F144/N100
Gold Grid						
25	F200/G025	F180/G025	F077/G025	F196/G025	F098/G025	F144/G025
50	F200/G050	F180/G050	F077/G050	F196/G050	F098/G050	F144/G050

Carbon Support Films

Quantity	Copper Grid					
	100 mesh	100 Hex	200 mesh	300 mesh	400 mesh	2 x 1mm
1	-	_	C101/001	C267/001	C169/001	_
25	_	-	C101/025	C267/025	C169/025	-
50	_	-	C101/050	C267/050	C169/050	_
100	-	-	C101/100	C267/100	C169/100	1
			Nickel Grid			
1	-	ı	C101/N001	C267/N001	C169/N001	ı
25	ı	ı	C101/N025	C267/N025	C169/N025	ì
50	-	ı	C101/N050	C267/N050	C169/N050	ı
100	-	ı	C101/N100	C267/N100	C169/N100	ı
			Gold Grid			
1		-	C101/G001	C267/G001	C169/G001	Ī
25	-	_	C101/G025	C267/G025	C169/G025	-
50		_	C101/G050	C267/G050	C169/G050	_

Standard carbon films are ~ 17-20nm thick but 30nm is available on request

For optically flat, mechanically and solvent resistant electron transparent specimen supports, see our Silicon Nitride Windows page 1.27

Nitro-Cellulose/Carbon

Mounted on 200 mesh 3.05mm copper grids

N056 Nitro-cellulose/Carbon film on 200 mesh cu gridN056/1 Nitro-cellulose/Carbon film on 200 mesh cu grid100

Silicon Monoxide

Mounted on 400 mesh 3.05mm copper grids

For certain applications silicon monoxide offers an exceptionally clean film and being carbon free, is valuable in some microanalysis investigations

S531 Silicon monoxide film on 400 mesh cu grid 50

Film Making Materials

POWDERS

An alternative support film material to Formvar is Butvar B98 as reported by Handley and Olsen, Ultramicrotomy 4,479 (1979). Exhibits good mechanical and high electron beam stability.

B026 Butvar B98 100g

C282 Collodion 25g

SOLUTIONS

F145/025 Formvar in chloroform 0.25%	100ml
F145/050 Formvar in chloroform 0.50%	100ml
F145/100 Formvar in chloroform 1%	100ml
F145/HAZ Formvar in chloroform****	4 x 25ml
F244/025 Formvar in ethylene dichloride 0.25%	100ml
F244/050 Formvar in ethylene dichloride 0.50%	100ml
E044/400 E ' (I I I I I I I A0/	400 1

F244/100 Formvar in ethylene dichloride 1%	100ml
F244/HAZ Formvar in ethylene dichloride****	4 x 25ml
C171/025 Collodion in amyl acetate 0.25%	100ml
C171/050 Collodion in amyl acetate 0.50%	100ml
C171/100 Collodion in amyl acetate 1%	100ml

C171/HAZ Collodion in amyl acetate **** 4 x 25ml

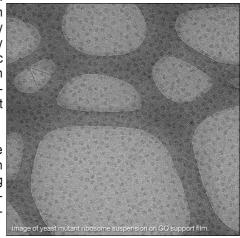
Other strengths of solution can be made to order, please enquire.

**** Any of the above solutions can be packed in 25ml bottles 4 to a pack to avoid its classification as a hazardous chemical for shipping purposes. Please quote the relevant catalogue number and specify when ordering the strength of solution required.

1.18

C171/200 Collodion in amyl acetate 2%

100ml


Graphene and Graphene Oxide Coated Grids

There are currently two Graphene substrates available - Graphene Oxide (GO) and CVD (chemical vapour deposition). Graphene oxide films are typically laid down on lacey carbon films in suspension form with micrometer sized flakes with a less controlled thickness and evenness of coverage over the grid. CVD Graphene oxide on the other hand are produced by oxidizing CVD Graphene films at relatively low temperatures in oxygen (typically 200°C or less). These are continuous films and typically have well characterized hydrophilic properties which is important for wetting the surface of the Graphene oxide film. This property aids in the dispersion of nano particles for example but is also important for cellular biology and protein chemistry applications. GO films are generally less costly than CVD Graphene.

Graphene Oxide Support Films

Graphene oxide (GO) provides a thinner support film but has a higher mechanical strength, electrical and thermal conductivity compared with support films made from other materials. TAAB Graphene Oxide support films are available on holey and lacey carbon and Quantifoil® support films. These new GO films are hydrophilic and ideally suited to imaging of small nanoparticles, nanowires and suspensions. Their low atomic number and thin-layer thickness result in significantly lower background contrast than conventional supports. GO support films are also ideal for Cryo TEM studies. The vitreous ice layer can be significantly thinner on GO support films providing higher contrast and hence higher resolution for structural determination.

Graphene offers some unique advantages for studying interactions and processes at the atomic level. As the first readily available two-dimensional material, it is a model system for transmission electron microscopy studies; it is almost electron transparent enabling other species to be resolved on its surface with atomic resolution. It is also a well-defined surface, allowing surface science techniques to be integrated with high resolution transmission electron microscopy and scanning probe microscopy.

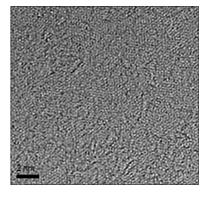
G203/25 Graphene oxide film on lacey carbon on 400 mesh Copper pack of 25 **G204/10** Graphene oxide film on Quantifoil R 2/2 on 300 mesh Cu pack of 10

Graphene TEM Support Films

PELCO® TEM support films are supported by a lacey carbon film on a 300 mesh copper grid. The single, continuous Graphene sheet covers the entire 300 mesh area of the TEM grid. This creates a usable area of around 75% of the TEM grid, leaving plenty of space for specimens or experiments. These Graphene TEM support films with the large area continuous film can be used directly out of the box. The continuous Graphene film represents a more practical Graphene support film compared to the Graphene enhanced lacey carbon supports.


The Graphene films are available with either 1, 2, 3-5 or 6-8 layers of Graphene. The 2 layer Graphene is ideally suited for high resolution TEM imaging, imaging of nanoparticles and imaging of weak contrast materials. Graphene exhibits excellent conductivity and very high transparency for electrons. The more robust 3-5 and 6-8 layer Graphene are offered for use as an experimental platform for Graphene research. It can be used for nano scale experiments or Graphene applications research with subsequent high resolution imaging.

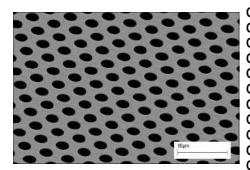
The Graphene used for these Graphene TEM support films is grown on copper foil using a CVD process. The Graphene is then released by dissolving the copper foil and transferred onto the lacey carbon/300mesh grid by using a proprietary transfer technique.


Graphene Specifications

Graphene Specifications
The sheet resistance for a single layer of the Graphene Film is 600Ω/sq
Thickness for the single layer of Graphene is normally approx. 0.35nm
Transparency of the single layer of Graphene is approx. 96.4%
Thickness for the 2 layers of Graphene is normally approx. 0.7nm
Transparency of the 2 layers of Graphene is approx. 92.7%
Thickness for the 3-5 layers of Graphene is between 1.0 - 1.7nm
Transparency of 3-5 layers of Graphene is in the range of 90.4 - 85.8%
Thickness for the 6-8 layers of Graphene is between 2.1 - 2.8nm
Transparency of 6-8 layers of Graphene is in the range of 83.2 - 78.5%

The Graphene has an in-plane modulus of 0.9TPa (compared with 1.0 TPa for Graphene produced by the scotch tape method)

Crystalline structure of Graphene Film


High resolution TEM image of 3-5 layer Graphene. Marker bar = 2nm.

Continued over page

Graphene Films on Grids

3-5 layer Graphene on Lacey Carbon film. Marker bar = 5µm

Graphene Films on Holey Silicon Nitride

Holey Silicon Nitride Support

Graphene Films on Ultra-flat SiO₂ Substrate

Single Layer Graphene Support Films

All films are on lacey carbon 300 mesh copper grids. Available in packs of 5, 10 or 25

in grid box.

G205/5 Single layer Graphene on 300 mesh lacey carbon pack of 5
G20510 Single layer Graphene on 300 mesh lacey carbon pack of 10
G205/25 Single layer Graphene on 300 mesh lacey carbon pack of 25

2 Layer Graphene Support Films

G206/5 Two layer Graphene on 300 mesh lacey carbon pack of 5
G206/10 Two layer Graphene on 300 mesh lacey carbon pack of 10
G206/25 Two layer Graphene on 300 mesh lacey carbon pack of 25

3 to 5 Layer Graphene Support Films

G207/53-5 layer Graphene on 300 mesh lacey carbon pack of 5G207/103-5 layer Graphene on 300 mesh lacey carbon pack of 10G207/253-5 layer Graphene on 300 mesh lacey carbon pack of 25

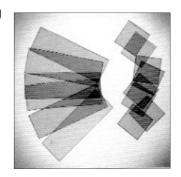
6 to 8 Layer Graphene Support Films

G208/5 6-8 layer Graphene on 300 mesh lacey carbon pack of 5
G208/10 6-8 layer Graphene on 300 mesh lacey carbon pack of 10
G208/25 6-8 layer Graphene on 300 mesh lacey carbon pack of 25

Graphene supported by Holey Silicon Nitride which has 2.5µm holes with a 4.5µm pitch in 200nm Si3N4 over a 0.5 x 0.5mm window size. The Graphene sheet covers the complete window with the ultraflat Si3N4 holey membrane and leaves free standing Graphene covering the 2.5µm holes. Total usable area is approx. 75% due to unavoidable folds and wrinkles in the Graphene sheet. Available with single, 2, 3-5, and 6-8 layer Graphene sheets. Research-ready product, suitable for UHR imaging or as ultra-flat experimental platform. Graphene specification as for above 300 mesh lacey carbon.

G209/5 Single Layer Graphene on Holey Silicon Nitride as above pack of 5 G209/10 Single Layer Graphene on Holey Silicon Nitride as above pack of 10 G209/25 Single Layer Graphene on Holey Silicon Nitride as above pack of 25 G210/5 2 layer Graphene on Holey Silicon Nitride as above pack of 5 G210/10 2 layer Graphene on Holey Silicon Nitride as above pack of 10 G210/25 2 layer Graphene on Holey Silicon Nitride as above pack of 25 G211/5 3-5 layer Graphene on Holey Silicon Nitride as above pack of 5 G211/10 3-5 layer Graphene on Holey Silicon Nitride as above pack of 10 G211/25 3-5 layer Graphene on Holey Silicon Nitride as above pack of 25 G212/5 6-8 layer Graphene on Holey Silicon Nitride as above pack of 5 G212/10 6-8 layer Graphene on Holey Silicon Nitride as above pack of 10 G212/25 6-8 layer Graphene on Holey Silicon Nitride as above pack of 25

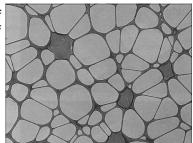
Graphene on Ultra-flat SiO_2 substrate offered for use as a research-ready experimental platform. The Graphene sheet covers the complete 5 x 5mm diced substrate. Total usable area is approx. 75% due to unavoidable folds and wrinkles in the Graphene sheet. Suitable for AFM imaging or as ultra-flat experimental platform. The Specification of the Graphene is the same as mentioned above. Supplied in a Gel-Pak box and packed in class 10 clean room conditions. Consists of a 200nm thermally grown SiO_2 film on an ultra-flat silicon wafer with a normal thickness of 675 μ m.


G213/5 Single Layer Graphene on Ultra-flat Thermal SiO2 Substrate, 5x5mm pack of 5 G213/10 Single Layer Graphene on Ultra-flat Thermal SiO2 Substrate, 5x5mm pack of 10 G213/25 Single Layer Graphene on Ultra-flat Thermal SiO2 Substrate, 5x5mm pack of 25 G214/5 2 Layer Graphene on Ultra-flat Thermal SiO2 Substrate, 5x5mm pack of 5 G214/10 2 Layer Graphene on Ultra-flat Thermal SiO2 Substrate, 5x5mm pack of 10 G214/25 2 Layer Graphene on Ultra-flat Thermal SiO2 Substrate, 5x5mm pack of 25 G215/5 3-5 Layer Graphene on Ultra-flat Thermal SiO2 Substrate 5x5mm pack of 5 G215/10 3-5 Layer Graphene on Ultra-flat Thermal SiO2 Substrate 5x5mm pack of 10 G215/25 3-5 Layer Graphene on Ultra-flat Thermal SiO2 Substrate 5x5mm pack of 25 G216/5 6-8 Layer Graphene on Ultra-flat Thermal SiO2 Substrate 5x5mm pack of 5 G216/10 6-8 Layer Graphene on Ultra-flat Thermal SiO2 Substrate 5x5mm pack of 10 G216/25 6-8 Layer Graphene on Ultra-flat Thermal SiO2 Substrate 5x5mm pack of 25

Mica Sheets

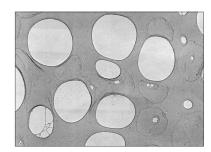
High grade mica for making freshly cleaved surfaces for such EM applications as carbon filming and particle spraying. Also suitable for high reolution AFM studies, growing cells and thin film coating research.

Available in the following sizes as stock items, other sizes can be supplied please enquire.


M054 M055 M459 M460 M461 M462 M463	Mica 3" x 1" x 0.006" thick (75 x 25 x 0.15mm) Mica 1" x 1" x 0.006" thick (25 x 25 x 0.15mm) Mica 11 x 11 x 0.15mm thick Mica 100 x 20 x 0.15mm thick Mica 150 x 150 0.15mm thick Mica 9.9mm dia x 0.1mm thick Mica 20 x 20mm thick ultra clean	20 sheets 20 sheets 20 sheets 20 sheets 3 sheets pack of 10 10 sheets
--	--	---

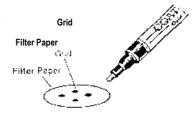
Lacey Carbon Films

These are carbon films with large holes, which make them particularly suitable for the support of acicular crystals. Much of the crystal is unsupported and therefore subject to a minimum of incoherent scattering from the film.


C269/C Lacey carbon film 300 mesh, 3.05mm, Cu	50
C269/N Lacey carbon film 300 mesh, 3.05mm, Ni	50
C270/C Lacey carbon film 400 mesh, 3.05mm, Cu	50
C270/N Lacey carbon film 400 mesh, 3.05mm, Ni	50
C270/G Lacey carbon film 400 mesh, 3.05mm.Au	50

Holey Carbon Films

These are similar to lacey carbon films with smaller holes.


50
50
50
50
50

Grid Coating Pen

The Grid Coating pen improves the adherence of tissue sections onto the grids. With a touch of the pen to the grid, a thin layer of coating is applied to the grid. Drying takes place in 1-2 minutes at room temperature. After it has dried the grid is ready for section mounting. The pen can also be used in pretreating grids prior to mounting support films such as formvar and carbon. This minimises dislodging, widening or breaking of the support film.

P293 Grid Coating Pen

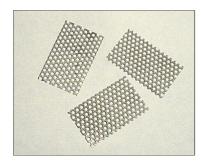
Phone: +44 (0) 118 981 7775

Grid Coating Stand

A stand designed with 49 recessed holes suitable for 3.05mm diameter grids. A groove is carefully machined to the correct depth which allows safe and easy access for tweezer manipulation of the grids.

Standing on 3 integral feet it is easily placed in a low glass dish to allow thin collodion or formvar films to be lowered onto the grids by siphoning off the water. The coated grids can then be transferred to the coating unit.

G122 Grid coating stand, thin film



www.taab.co.uk 1.2

1

1

Grids & Specimen Supports

Grid Coating Plate

Made from nickel, these perforated plates are very useful in the preparation of grid coating. The plate is placed under distilled water and the surface supporting the film is gradually lowered. Excess water is removed by blotting from below. The plate containing filmed grids can be transferred to a vacuum coating unit for carbon coating or to a freeze-drying unit.

G107 Grid coating plate pack 3

Grid Transporting Box

Designed to store or transport grids this TAAB box has an indexed silicone rubber plate housed in a transparent viewing box with hinged lid.

The silicone rubber plate is divided into 54 individual compartments of 10mm square, each compartment capable of holding 3 grids. Grids adhere well to the silicone rubber plate and grids cannot migrate from one square to another when the lid is closed and it is easy to pick up grids without damaging tweezer tips.

Overall size of box: 95 x 70 x 6mm deep. Comes complete with a record card.

G117 Grid transporting box each
G117/1 Grid transporting box per 10

Grid Plate

Round silicone rubber indexed grid storage plate numbered. Available in two sizes 85mm and 45mm diameter which are supplied mounted in either 90mm or 50mm plastic Petri dish or supplied loose. This is an ideal way of storing "working grids" or staining grids. The grids adhere lightly to the silicone plate, which eliminates the problem of grids jumping. The grids are easily picked up without damaging the tweezer tips or the grid.

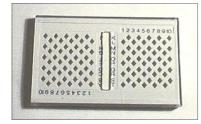
G082 plate has 16 x 14mm squares and the G125 plate has 9 x 10mm squares. The plates can easily be washed clean.

Please note: Not recommended for storing grids which are to be used in X-ray microanalysis work due to Silicone rubber contamination.

G082	Grid plate,(85mm) in Petri dish	each
G082/1	Grid plate,(85mm) in Petri dish	pack 10
G082P	Grid plate,(85mm) - loose	pack 10
G125	Grid plate,(45mm) in Petri dish,	each
G125P	Grid plate, 45mm) - loose	pack 10

Grid Storage Boxes

See also page 1.26


BEEM Dial-a-Grid Box

Indexed grid box containing 24 letter-labelled crossed slots, which accommodate 3.05mm in one direction and 2.3mm in the other. The grids are accessed one at a time through a hole in the clear rotating protection disc . The box is totally enclosed by a hinged lid making the box fully dust proof.

Dimensions; 57 x 45 x 12.5mm high.

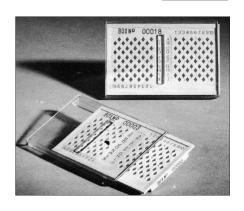
G114 BEEM Grid storage box . each

Specimen Grid Box

These boxes hold up to 100 grids in numbered holes, designed to take either 3.05mm or 2.3mm grids accessed a row at a time through a slot in the sliding cover. Dimensions; $85 \times 58 \times 7$ mm high. Complete with grid recording card.

G062Specimen grid box.eachG063Specimen grid box.per 10

1.22


Numbered Specimen Grid Box

Identical to G062 but with a *unique* number printed on the face and one end. Advantages:

- Eliminates the placement of the specimen grid in the wrong box
- Easy retrieval of grid box from storage
- Complete with grid storage card

Dimensions; 85 x 58 x 7mm high.

G120 Specimen grid box, numbered. eachG121 Specimen grid box, numbered. per 10

LKB/LEICA Specimen Grid Box

Storage for 100 grids in 5 straight columns of 20 slots all referenced. Takes both 3.05mm and 2.3mm diameter grids.

Dimensions; 80 x 50 x 7mm high. G133 LKB/Leica grid storage box

G133 LKB/Leica grid storage box per 10
G133/1 LKB/Leica grid storage box. each

Specimen Grid Box

Storage for 50 grids. Takes both 3.05mm and 2.3mm diameter grids. The box is manufactured from a plastic having a low susceptibility to charging. All holes are numbered.

G126 Specimen grid storage box - 50 grids each

Grid Staining System

Designed to handle up to 25 grids at one time or as few as a single one. The Matrix has the following features:

- * Greatly reduces the chance of mechanical damage
- * Ensures equal staining and rinse times
- * Has a simple alpha-numeric system for easy identification of each grid.

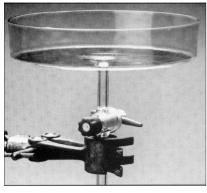
The plastics used are not acid-resistant and are designed for aqueous solutions only. Note: Do Not use alcohol- based stains; they will damage or destroy the staining vessels. One vessel could, for example, be used for uranyl acetate and the other one for lead citrate.

G270 Grid staining system
GG270/C Replacement staining vessels - 1 red and 1 blue

Zerostat Anti-Static Gun

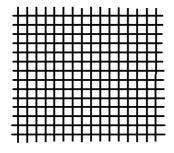
Anti-static generator for neutralising static charges of either polarity on any insulating surface. Use to reduce the risk of grids jumping out of boxes and to eliminate a block charging defect during ultramicrotomy.

G083 Zerostat gun . each



Vacuum Tweezer

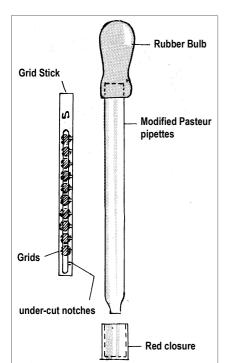
Useful for handling without damage, small, delicate items i.e. grids, specimens etc. The suction can be applied through a selection of either fine tubes or rubber suckers actuated by covering the hole in the tube with a finger. The object being lifted is released by lifting the finger from the hole. Nozzle sizes are 0.4mm, 0.7mm and 1.0mm.


T106	Vacuum tweezer – 240 volt model	each
T106/1	Vacuum tweezer – 110 volt model	each
T106/S	Set of spare nozzles and tubing	set

Settlement Dish

Settlement dish, 135mm diameter with drain tap. Useful for removing distilled water when preparing formvar, butvar or collodion support films, or for floating down stripped carbon films on to TEM grids.

D195 Dish, settlement, 135mm diam. glass. each



Stainless Steel Mesh

A fine but rigid stainless steel mesh 150 x 150mm square with a mesh size of approximately 0.5mm that can be used with the settlement dish as a support to receive the grids after they are placed on the support film.

Can also have other uses within the laboratory

W100 150 x 150mm stainless steel mesh 3 pieces

Gridstick

An economical and simple solution to staining multiples of grids.

A SynapTek Grid Staining Stick is a device which can take up to 10 grids held to the stick by a self adhesive glue which withstands all organic solvents remains effective for at least six uses. The grids are loaded onto one side of the Grid Stick with the aid of tweezers and they can be processed *in situ* throughout the staining, washing and drying procedures. The loaded Grid stick is placed inside a modified pipette which has a rubber bulb fitted to one end. It is now a simple operation to pipette the relevant fluids around the grids. The Grid sticks are provided with undercut notches to facilitate easy removal of grids from the

stick with tweezers. Each kit comprises;-

5 Pre-coated Grid Sticks, inside five pipettes with red closures.

10 Modified Pasteur pipettes - five for Uranyl Acetate and five for Lead Citrate

www.taab.co.uk

2 Rubber bulbs with flow limiting plugs

Other possible uses;-

Collecting serial sections - Grid support for carbon coating - Emulsion coating for autoradiography - Preliminary inspection of biological material at the light level - using a phase microscope - Special staining procedures.

G088 Gridstick kit

G088/G Gridstick adhesive 5ml

G088/S Gridsticks uncoated pack of 10

New High Mesh Grids with much improved transmission values

There is an increasing interest in life sciences, material science, semi conductor and nanotechnology for specialised supports with high mesh values and with greater transmission performance. To meet this demand TAAB introduces three new products from Gilder Grids designed to improve support for thin specimens and membranes by having high hole/bar ratios that give good transmission values. They are available in copper, nickel and gold.

Type G1000HH	Hexagonal Mesh 25 grids/vial	
Overall diameter Mesh diameter Lines/inch Pitch Bar width Hole width	3.05mm 2mm ~1,000 25µm ~6µm ~19µm	
Type G1500HH Hexagonal Mesh 15 grids/vial		

•	•	
Overall diameter	3.05mm	
Mesh diameter	2mm	
Lines/inch	~1 500	

 $\begin{array}{lll} \text{Mesh diameter} & 2\text{mm} \\ \text{Lines/inch} & \sim 1,500 \\ \text{Pitch} & 16.5 \mu\text{m} \\ \text{Bar width} & \sim 6\mu\text{m} \\ \text{Hole width} & \sim 10.5 \mu\text{m} \\ \end{array}$

Type G2000HA Circular holes 10 grids/vial

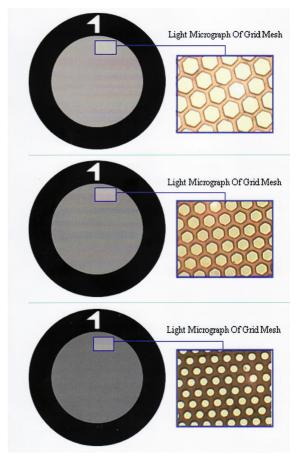
Overall diameter 3.05mm
Mesh diameter 2mm
Lines/inch ~2,000
Pitch 12.5µm
Bar width ~6µm
Hole width ~6.5µm

GG075/C Gilder grid G1000HH *Cu*

GG075/N Gilder grid G1000HH *Nickel*

GG075/G Gilder grid G1000HH *Gold*

GG077/C Gilder grid G1500HH *Cu*

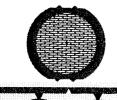

GG077/N Gilder grid G1500HH *Nickel*

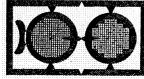
GG077/G Gilder grid G1500HH *Gold*

GG076/C Gilder grid G2000HA *Cu*

GG076/N Gilder grid G2000HA *Nickel*

GG076/G Gilder grid G2000HA *Gold*




Extended Maxtaform Range of Research Grids

Maxtaform have increased their range of patterns and mesh sizes in a wide variety of metal foils. There are also mesh sizes from 50 to 600, solid grids with holes 0.4 to 2mm, finder grids with various patterns and folding grids with or without handles. materials include copper, nickel, gold, titanium, molybdenum, stainless steel, aluminium and copper/rhodium.

New 600 Mesh Grids

Without handles in copper (1GC600), nickel (1GN600) and copper/rhodium (1GC/Rh600) With handles in copper (3HGC600), nickel (3HGN600 and copper/rhodium (HGC/Rh600)

New 300 & 400 Mesh Grids

300 mesh - 1GT300 titanium, 1GA300 aluminium and 1GS300 stainless steel 400 mesh - 1GT400 titanium and 1GS400 stainless steel

New 75/300 Staggered Mesh Grids

Available in Copper, Copper/Rhodium, Nickel and gold (see table below)

New H12 Folding Grids

A combination of H1 and H2 grids in folded format. LH grid is standard 200 mesh, RH grid is 200 mesh reference pattern. Available in Copper, Copper/Rhodium or Nickel.

New IG15H with Handle

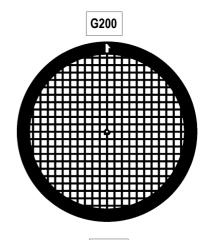
1.5mm hole grid in Copper and Nickel with handle. Also available in Cu/Rh, Au, Al, SS, Mo and Ti - please ask.

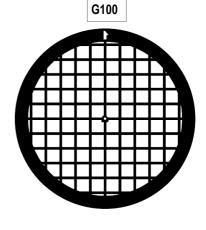
New HF49 Slot Grid now in Copper/Rhodium

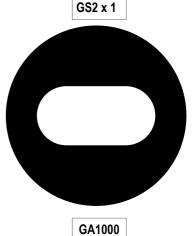
2 x 1mm slot

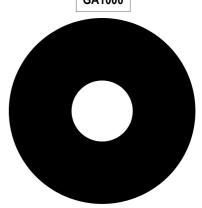
Pattern	Cat. no.	Pitch (µm)	Mesh (µm)	Hole (µm)	Bar (µ)	Transmissio n %	Tol'an ce	Qty/ vial
1GC600	GE047/C	41	600	26	15	42	±5µm	100
1GN600	GE047/N	41	600	26	15	42	±5µm	100
3HGC600	GE048/C	41	600	26	15	42	±5µm	100
3HGN600	GE048/N	41	600	26	15	42	±5µm	100
1GA300	G009/A	85	300	54	23	40	±5%	25
1GT300	GE009/T	85	300	54	31	40	±5µm	25
1GS300	GE009/S	85	300	54	31	40	±5µm	25
1GA400	GE011/A	64	400	38	30	35	±5µm	25
1GT400	GE011/T	64	400	38	21	35	±5µm	25
1GS400	GE011/S	64	400	38	21	35	±5µm	25
H12 Cu	GM046/C	127/127	200	112/108	15/19	78/72	±2µm	25
H12 Cu/Rh	GM046/CR	127/127	200	112/108	15/19	78/72	±2µm	25
H12 Ni	GM046/N	127/127	200	112/108	15/19	78/72	±2µm	25
75/300 staggered Cu	GM047/C	339 x 85	75/300	284/55	30	55	±5µm	100
75/300 staggered Cu/Rh	GM047/CR	339 x 85	75/300	284/55	30	55	±5µm	100
75/300 staggered Ni	GM047/N	339 x 85	75/300	284/55	30	55	±5µm	100
75/300 staggered Au	GM047/G	339 x 85	75/300	284/55	30	55	±5µm	25
1GC15H	GM048/C			1500			±20µm	100
1GN15H	GM048/N			1500			±20µm	100
HF49Cu/Rh	GM049/CR			2000 x 1000			±10µm	100

TEM Specimen Supports in Molybdenum

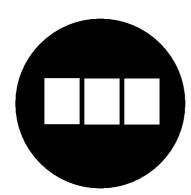

We can offer a new range of four molybdenum grids from Gilder. These new products are manufactured using a process known as 'chemical milling' (etching) instead of the more familiar technique of 'electroforming' (deposition) used to make copper, nickel and gold products. Molybdenum is used principally in applications where resistance to high temperature and corrosion coupled with hardness and a low expansion coefficient are deemed to be important.. The material has a typical purity of 99.9%.


GG005/M	G200	Specifications	
Overall diameter Rim width Rim mark Centre mark Lines/inch	3.05mm 0.225mm yes yes 200	Pitch 125µ Bar width 35µn Hole width 90µn Overall thickness 25µn	า า
GG003/M	G100	Specifications	
Overall diameter Rim width Rim mark Centre mark Lines/inch	3.05mm 0.225mm yes yes 100	Pitch 250µ Bar width 45µn Hole width 205µ Overall thickness 25µn	n m


GG030/M	GS2X1	Specifications		
Overall diameter Rim width Rim mark	3.05mm N/A N/A	Pitch Bar width Hole width	N/A N/A 2 x 1mm	
Centre mark Lines/inch	N/A N/A	Overall thickness	50µm	


GG044/M	G200	Specifications		
Overall diameter Rim width Rim mark Centre mark Lines/inch	3.05mm N/A N/A N/A N/A	Pitch Bar width Hole width Overall thickness	N/A N/A 1000µm 50µm	

Symbol Mo Atomic no. 42 Melting Point 2617.0°C (2890.15.6°K, 4742.6°F) Boiling Point 4612.0°C (4885.15°K, 8333.6°F) Density 10.22g/cm²



New Slot Grid from Gilder

The new GS2/3X1 has two central bars to provide increased support enabling thinner support films to be used. Rigidity has been maintained by making the thickness $\sim 50 \mu m$. Available in copper with a flash of palladium on one side, nickel and gold. The copper and nickel grids are also available with an immersion coating of gold to increase chemical resistance at an attractive price. Gold in vials of 50 grids, molybdenum in vials of 25, all other vials of 100.

Overall diameter 3.05mm, Hole sizes 606 x 1000µm

GG078/C GS2/3X1 Cu (100) **GG078/N** GS2/3X1 Ni (100) **GG078/G** GS2/3X1 Au (50)

GG078/P GS2/3X1 Cu/Pd (100) **GG078/M** GS2/3X1 Mo (25)

Specimen Grid Storage Boxes

These new grid storage boxes are designed for the routine handling and long term storage of 50 standard size TEM grids. The ergonomic design incorporates several features that overcome the disadvantages associated with storage boxes of the more conventional 'sliding cover' design. Each **SB50BN** box has a unique number on the face and one end so no two boxes can ever be confused.

Features:

- A blue arrow at the 12 0'clock position indicates the park position for the cover when not in use. This is a firm 'click' position and cannot be moved accidentally, thus preventing spillage.
- The clear cover can be rotated smoothly through 360° once the slight initial resistance of the park position has been overcome exposing a maximum of 2 or 3 diamond shaped holes at any one time.
- The materials have been chosen for their anti-static properties, the clear cover also
 having self lubricating properties which reduces friction enabling the cover to move
 freely whilst remaining in close contact with the face of the base.
- The diamond shaped holes have an alpha numeric referencing system and each box is supplied with an indexed record card for additional information.
- The boxes are designed to be stacked with the base locating precisely over the face of another box.

G202 SB50 grid storage box (holds 50 grids)
G202/BN SB50BN grid storage box with unique number (holds 50 grids)

Each SB50BN storage box has a unique number so no two boxes can ever be confused.

Specifications SB50 and SB50BN:

Size 75mmL x 65mmW x 6.5mmD

Weight 22 gm

Materials

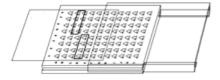
Base ABS-PHAT (Acrylonitrile Butadiene Styrene + Anti-Static Additive

Clear cover CAB (Cellulose Acetal Butyrate)

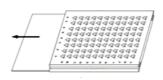
Lift-out Grid Storage Box

Storage box for 100 standard 3mm lift-out TEM grids. Complete with base, lid and clips. The grids are stored horizontally.

G117 Lift-out grid storage box

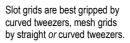

MEM Grid Box Multipurpose EM Specimen Grid Box

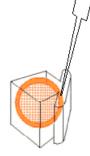
A newly designed Grid Box offering **safety**, **ease and convenience** – This EM specimen grid box is one of the most desirable boxes on the market.


Advantages:

- Eliminates the chances of tweezer insertion damaging the grids The 'tweezers slot' and 'grid slot' are in a separate location. The tweezers are only able to grip the edge of the grid enabling it to be picked up.
- Stored grids no longer jump out of the box when the cover is removed. There is a separate plastic cover between the box and the sliding lid which allows only four slots to be exposed at any time.
- The Grid Record Card is stored safely along on the reverse side of the box.
 Dimensions: 81mm L x 54mm W x 6mm Thick.

G279MEM-96 can store up to store up to 96 gridseachG279/10MEM-96 to store up to 96 grids10 packG280MEM 32 can store up to 32 grids and 8 blockseachG280/10MEM 32 to store up to 32 grids and 8 blocks10 pack




When moving the plastic cover only four holes are exposed at any time

Record card is stored under the box

FIB Grid Storage Box

Storage box for four (4) FIB lift-out grids or half grids. Cavity depth is just 1.7mm, thus preventing grids from rotating. The diamond shaped cavities allow grids to be easily loaded or unloaded using fine tweezers.

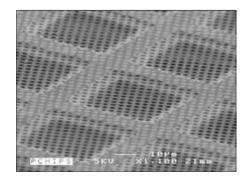
G277 FIB grid storage box

Cryo Grid Boxes

These cryo grid boxes are used for transferring, storing and manipulating vitrified cryo TEM specimens made with cryo devices such as the FEI Vitrobot™, Gatan 626 or Gatan CT4500 cryotransfer systems and others. There are two versions each with four storage positions. The circular box is the most widely used and is available with or without a non-static rotatable lid. All of the boxes have a 5/40 tap in the centre. On versions with lids, the lid is held in place with a stainless steel screw. They can also be used for storing or transporting small numbers of grids or specimens. A handling tool is available

G274 Cryo grid box with lid, circular G274/B Cryo grid box base only

for the cryo grid boxes.


G278 Cryo grid box with pin type lid, circular

G275 Cryo grid box with lid, square G276 Cryo grid box handling tool

G276 Cryo grid box handling tool

1.29

TEM grid 0000 0000 0000 $\circ \circ \circ$ Hole Spacing Inset of carbon film

Ordering Information

CF-MH-2C and CF-MH-4C

Multi-hole and space. The Multi-hole device has a staggered pattern of six features consisting of three circle patterns of 1µm, 1.4µm and 2µm diameter and three ellipse patterns of 1µm x 4µm, 1.4µm x 5.6µm and 2µm x 8µm.

G281/C25 CF-MH-2C Multi-hole on 200 mesh Cu grid (25) G281/C50 CF-MH-2C Multi-hole on 200 mesh Cu grid (50) G281C100 CF-MH-2C Multi-hole on 200 mesh Cu grid (100)

CF-1/1-2C and CF-1/1-4C (200 mesh Cu) (400 mesh Cu)

1.0µm hole, 1.0µm space

G283/C25 CF-1/1-2C 1µm hole x 1µm space on 200 mesh Cu grid (25) G283/C50 CF-1/1-2C 1µm hole x 1µm space on 200 mesh Cu grid (50) **G283/C100** CF-1/1-2C 1µm hole x 1µm space on **200** mesh Cu grid (100)

CF-1.2/1.3-2C and CF-1.2/1.3-4C (200 mesh Cu) (400 mesh Cu)

1.2µm hole, 1.3 µm space

G285/C25 CF-1.2/1.3-C 1.2µm hole x 1.3µm space on 200 mesh Cu grid (25) G286/C25 CF-1.2/1.3-4C 1.2µm hole x 1.3µm space on 400 mesh Cu grid (25)

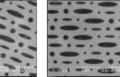
G285/C50 CF-1.2/1.3-C 1.2μm hole x 1.3μm space on 200 mesh Cu grid (50) G286/C50 CF-1.2/1.3-4C 1.2μm hole x 1.3μm space on 400 mesh Cu grid (50) G285/C100 CF-1.2/1.3-C 1.2µm hole x 1.3µm space on 200 mesh Cu grid (100) G286/C100 CF-1.2/1.3-4C 1.2µm hole x 1.3µm space on 400 mesh Cu grid (100)

CF-2/0.5-2C CF-2/0.5-4C and (No Images) (200 mesh Cu) (400 mesh Cu)

2.0µm hole, 0.5µm space

G287/C25 CF-2/0.5-2C 2µm hole x 0.5µm space on **200** mesh Cu grid (25) **G287/C50** CF-2/0.5-2C 2µm hole x 0.5µm space on **200** mesh Cu grid (50) **G287/C100** CF-2/0.5-2C 2µm hole x 0.5µm space on **200** mesh Cu grid (100)

G288/C25 CF-2/0.5-4C 2µm hole x 0.5µm space on **400** mesh Cu grid (25) **G288/C25** CF-2/0.5-4C 2µm hole x 0.5µm space on **400** mesh Cu grid (50) G288C/25 CF-2/0.5-4C 2µm hole x 0.5µm space on 400 mesh Cu grid (100)

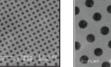

Ultra Flat Holey Carbon Grids for Cryo TEM

C-flat[™] is an ultra-flat, holey, carbon-coated TEM support grid for transmission electron microscopy (TEM). Unlike some other holey carbon films, C-flat™ is manufactured without plastics, so it is clean and without residue. Made with patent pending technology, Cflat™ provides an ultra-flat surface that results in better particle dispersion and more uniform ice thickness. Patterning is done using deep-UV projection lithography, ensuring the most accurate and consistent hole shapes and sizes down to submicron features. The precise methods by which C-flat™ is manufactured eliminate artefacts such as excess carbon and edges around holes.

C-flat™ holey carbon grids provide the ideal specimen support to achieve high resolution data in cryo-TEM making them an ideal choice for single particle analysis, cryo electron tomography and automated TEM analysis. C-flat™ is a holey carbon film supported by a standard TEM grid. C-flat™ products are fully specified by 4 parameters: the hole diameter and pitch of the holey carbon film plus the material type and mesh size of the

C-flat™ is available in several standard array patterns including hole diameters/hole spacings of 0.6/2, 1/1, 1/2, 1/4, 1.2/1.3, 2/1, 2/2, 2/4, 4/2, and a multi-hole pattern. Cflat™ is supported by your choice of a 200 mesh or 400 mesh copper TEM grid and sold in quantities of 25, 50, or 100. Available on other grid materials (e.g. gold) to special order.

1500x (45°)

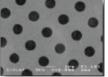


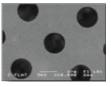
G282/C100 CF-MH-4C Multi-hole on 400 mesh Cu grid (100)

10,000x

G282/C25 CF-MH-4C Multi-hole on 400 mesh Cu grid (25) **G282/C50** CF-MH-4C Multi-hole on **400** mesh Cu grid (50)

3000x





20,000x

G284/C100 CF-1/1-4C 1µm hole x 1µm space on 400 mesh Cu grid (100)

G284/C50 CF-1/1-4C 1µm hole x 1µm space on 400 mesh Cu grid (50)

Images show C-flat™ mounted on a stub using carbon tape and imaged with a Field Emission Scanning Electron Microscope

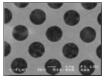
1

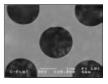
C-flat™ Ultra Flat Holey Carbon Grids Cont...

C-flat™ is a trademark of Protochips, Inc. All rights reserved

1500x (45°)

3000x


10,000x

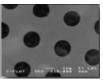

20,000x

CF-2/1-2C and **CF-2/1-4C** (200 mesh Cu) (400 mesh Cu)

2.0µm hole, 1.0µm space

eren on alles decen

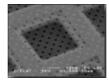
 $\begin{array}{lll} \textbf{G289/C25} & \text{CF-2/1-2C 2}\mu\text{m hole x 1}\mu\text{m space on 200 mesh Cu grid (25)} \\ \textbf{G289/C50} & \text{CF-2/1-2C 2}\mu\text{m hole x 1}\mu\text{m space on 200 mesh Cu grid (50)} \\ \textbf{G289/C100} & \text{CF-2/1-2C 2}\mu\text{m hole x 1}\mu\text{m space on 200 mesh Cu grid (100)} \\ \end{array}$

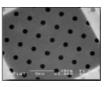

G290/C25 CF-2/1-4C 2µm hole x 1µm space on **400** mesh Cu grid (25) **G290/C25** CF-2/1-4C 2µm hole x 1µm space on **400** mesh Cu grid (50) **G290/C25** CF-2/1-4C 2µm hole x 1µm space on **400** mesh Cu grid (100)

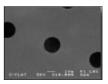
CF-2/2-2C and **CF-2/2-4C** (200 mesh Cu) (400 mesh Cu)

2 Oum hole 2 Oum ange

and the state of




2.0µm hole, 2.0µm space


G291/C25 CF-2/2-2C $2\mu m$ hole x $2\mu m$ space on **200** mesh Cu grid (25) **G291/C50** CF-2/2-2C $2\mu m$ hole x $2\mu m$ space on **200** mesh Cu grid (50) **G291/C100** CF-2/2-2C $2\mu m$ hole x $2\mu m$ space on **200** mesh Cu grid (100)

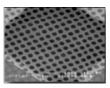
G292/C25 CF-2/2-4C $2\mu m$ hole x $2\mu m$ space on **400** mesh Cu grid (25) **G292/C50** CF-2/2-4C $2\mu m$ hole x $2\mu m$ space on **400** mesh Cu grid (50) **G292/C100** CF-2/2-4C $2\mu m$ hole x $2\mu m$ space on **400** mesh Cu grid (100)

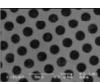
CF-2/4-2C and **CF-2/4-4C** (200 mesh Cu) (400 mesh Cu)

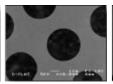
2.0µm hole, 4.0µm space

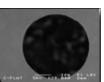
G293/C25 CF-2/4-2C 2μm hole x 4μm space on 200 mesh Cu grid (25) G293/C50 CF-2/4-2C 2μm hole x 4μm space on 200 mesh Cu grid (50) G293/C/100 CF-2/4-2C 2μm hole x 4μm space on 200 mesh Cu grid (100)

G294/C25 CF-2/2-4C 2μm hole x 4μm space on **400** mesh Cu grid (25) **G294/C50** CF-2/2-4C 2μm hole x 4μm space on **400** mesh Cu grid (50) **G294/C100** CF-2/2-4C 2μm hole x 4μm space on **400** mesh Cu grid (100)


CF-4/1-2C and **CF-4/1-4C** (200 mesh Cu) (400 mesh Cu)


No images


4.0µm hole, 1.0µm space


G295/C25 CF-4/1-2C $4\mu m$ hole x $1\mu m$ space on **200** mesh Cu grid (25) **G295/C50** CF-4/1-2C $4\mu m$ hole x $1\mu m$ space on **200** mesh Cu grid (50) **G295/C100** CF-4/1-2C $4\mu m$ hole x $1\mu m$ space on **200** mesh Cu grid (100)

CF-4/2-2C and **CF-4/2-4C** (200 mesh Cu) (400 mesh Cu)

4.0µm hole, 2.0µm space

G297/C25 CF-4/2-2C $4\mu m$ hole x $2\mu m$ space on **200** mesh Cu grid (25) **G297/C50** CF-4/2-2C $4\mu m$ hole x $2\mu m$ space on **200** mesh Cu grid (50) **G297/C100** CF-4/2-2C $4\mu m$ hole x $2\mu m$ space on **200** mesh Cu grid (100)

G298/C25 CF-4/2-4C 4μ m hole x 2μ m space on **400** mesh Cu grid (25) **G298/C50** CF-4/2-4C 4μ m hole x 2μ m space on **400** mesh Cu grid (50) **G298/C100** CF-4/2-4C 4μ m hole x 2μ m space on **400** mesh Cu grid (100)

1.31

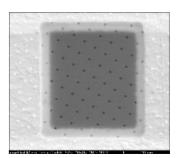
Quantifoil® Holey Carbon Films

QUANTIFOIL® holey carbon films are 15-20nm thick and are produced by a semiconductor lithographic process. They are available with different hole sizes, shapes and arrangements. Researchers who would like to try out different types of QUANTIFOIL® holey films in order to find out which one meets their requirements best, can order our MixBox. QUANTIFOIL® R 1/4 may be preferred over R 1.2/1.3 (see below), when an increased tolerance with respect to the position of beam and a larger beam diameter are desired, such as in the case with automated image acquisition. QUANTIFOIL® provide a high percentage of open area in addition to minimising total specimen

The thickness of the foil is about 20 nm, although only 10 nm of carbon is evaporated onto the plastic. The surface properties of QUAN-TIFOIL® holey carbon support film, especially the wetting properties, may have to be adapted according to one's particular requirements. Untreated ageing QUANTIFOIL® tends to be hydrophobic. The foil can be made hydrophilic by glow discharging in residual air or by metal coating. QUANTIFOIL® grids are packaged with their coated sides toward the centre of the grid box.. Holey films with new geometric parameters can be designed. In addition, they can be delivered with coatings other than carbon that can be deposited by vacuum evaporation.

QUANTIFOIL® with circular holes is mainly used in cryo-EM. The roundness of the holes is advantageous for the formation of an ice layer of constant thickness. The hole size that is chosen depends on the magnification used and on whether or not one wishes to include a support film in the image. Assessment of the image quality is easier when foil is included in the picture as the power spectrum of a foil is stronger than that of unsupported ice. For those customers unsure of which Quantifoil® to use please try our MixBox.

> Quantifoil® with Round Holes on Copper, Nickel & Gold Grids 200, 300 & 400 Mesh and in 50 or 100 pack sizes

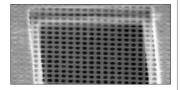

Quantifoil R 0.6/1

G299/2C/50 Quantifoil 0.6um dia x 1.0um **200** Mesh *Cu* 50 pack **G299/2C/100** Quantifoil 0.6um dia x 1.0um **200** Mesh *Cu* 100 pack **G299/2N/50** Quantifoil 0.6um dia x 1.0um **200** Mesh *Ni* 50 pack **G299/2N/100** Quantifoil 0.6um dia x 1.0um **200** Mesh *Ni* 100 pack **G299/2G/50** Quantifoil 0.6um dia x 1.0um **200** Mesh *Au* 50 pack **G299/2G/100** Quantifoil 0.6um dia x 1.0um **200** Mesh *Au* 100 pack

G299/3C/50 Quantifoil 0.6um dia x 1.0um **300** Mesh *Cu* 50 pack **G299/3C/100** Quantifoil 0.6um dia x 1.0um **300** Mesh *Cu* 100 pck **G299/3N/50** Quantifoil 0.6um dia x 1.0um **300** Mesh *Ni* 50 pack **G299/3N/100** Quantifoil 0.6um dia x 1.0um **300** Mesh *Ni* 100 pck **G299/3G/50** Quantifoil 0.6um dia x 1.0um **300** Mesh *Au* 50 pack **G299/3G/100** Quantifoil 0.6um dia x 1.0um **300** Mesh *Au* 100 pck

G299/4C/50 Quantifoil 0.6um dia x 1.0um **400** Mesh *Cu* 50 pack **G299/4C/100** Quantifoil 0.6um dia x 1.0um **400** Mesh *Cu* 100 pack **G299/4N/50** Quantifoil 0.6um dia x 1.0um **400** Mesh *Ni* 50 pack **G299/4N/100** Quantifoil 0.6um dia x 1.0um **400** Mesh *Ni* 100 pack **G299/4G/50** Quantifoil 0.6um dia x 1.0um **400** Mesh *Au* 50 pack **G299/4G/100** Quantifoil 0.6um dia x 1.0um **400** Mesh *Au* 100 pack

Quantifoil® Holey Carbon Films with **0.6µm holes** separated by 1µm spaces

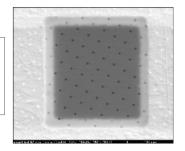

Quantifoil R 1.2/1.3

G300/2C/50 Quantifoil 1.2μm dia x 1.3μm **200** Mesh *Cu* 50 pack **G300/2C/100** Quantifoil 1.2µm dia x 1.3µm **200** Mesh *Cu* 100 pack **G300/2N/50** Quantifoil 1.2µm dia x 1.3µm **200** Mesh *Ni* 50 pack **G300/2N/100** Quantifoil 1.2µm dia x 1.3µm **200** Mesh *Ni* 100 pack **G300/2G/50** Quantifoil 1.2µm dia x 1.3µm **200** Mesh *Au* 50 pack

G300/3C/50 Quantifoil 1.2µm dia x 1.3µm **300** Mesh *Cu* 50 pack **G300/3C/100** Quantifoil 1.2µm dia x 1.3µm **300** Mesh *Cu* 100 pck **G300/3N/50** Quantifoil 1.2µm dia x 1.3µm **300** Mesh *Ni* 50 pack **G300/3N/100** Quantifoil 1.2µm dia x 1.3µm **300** Mesh *Ni* 100 pck **G300/3G/50** Quantifoil 1.2µm dia x 1.3µm **300** Mesh *Au* 50 pack G300/2G/100 Quantifoil 1.2µm dia x 1.3µm 200 Mesh Au 100 pack G300/3G/100 Quantifoil 1.2µm dia x 1.3µm 300 Mesh Au 100 pack

G300/4C/50 Quantifoil 1.2µm dia x 1.3µm **400** Mesh *Cu* 50 pack G300/4C/100 Quantifoil 1.2µm dia x 1.3µm 400 Mesh Cu 100 pck **G300/4N/50** Quantifoil 1.2μm dia x 1.3μm **400** Mesh *Ni* 50 pack **G300/4N/100** Quantifoil 1.2µm dia x 1.3µm **400** Mesh *Ni* 100 pck **G300/4G/50** Quantifoil 1.2µm dia x 1.3µm **400** Mesh *Au* 50 pack G300/4G/100 Quantifoil 1.2µm dia x 1.3µm 400 Mesh Au 100 pck

Quantifoil® Holey Carbon Films with 1.2µm holes separated by 1.3µm spaces

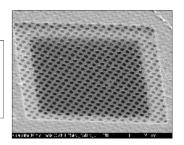

Quantifoil R 1/4

G301/2C/50 Quantifoil 1um dia x 4um **200** Mesh *Cu* 50 pack **G301/2C/100** Quantifoil 1um dia x 4um **200** Mesh *Cu* 100 pack **G301/2N/50** Quantifoil 1um dia x 4um **200** Mesh *Ni* 50 pack G301/2N/100 Quantifoil 1um dia x 4um 200 Mesh Ni 100 pack **G301/2G/50** Quantifoil 1um dia x 4um **200** Mesh *Au* 50 pack G301/2G/100 Quantifoil 1um dia x 4um 200 Mesh Au 100 pack

G301/3C/50 Quantifoil 1um dia x 4um **300** Mesh *Cu* 50 pack G301/3C/100 Quantifoil 1um dia x 4um 300 Mesh Cu 100 pack **G301/3N/50** Quantifoil 1um dia x 4um **300** Mesh *Ni* 50 pack G301/3N/100 Quantifoil 1um dia x 4um 300 Mesh Ni 100 pack **G301/3G/50** Quantifoil 1um dia x 4um **300** Mesh *Au* 50 pack G301/3G/100 Quantifoil 1um dia x 4um 300 Mesh Au 100 pack

G301/4C/50 Quantifoil 1um dia x 4um **400** Mesh *Cu* 50 pack **G301/4C/100** Quantifoil 1um dia x 4um **400** Mesh *Cu* 100 pack **G301/4N/50** Quantifoil 1um dia x 4um **400** Mesh *Ni* 50 pack G301/4N/100 Quantifoil 1um dia x 4um 400 Mesh Ni 100 pack **G301/4G/50** Quantifoil 1um dia x 4um **400** Mesh *Au* 50 pack G301/4G/100 Quantifoil 1um dia x 4um 400 Mesh Au 100 pack

Quantifoil® Holey Carbon Films with 1µm holes separated by 4µm spaces



Quantifoil R 2/1

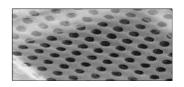
G310/2C/50 Quantifoil 2µm dia x 1µm **200** mesh *Cu* 50 pack G310/2C/100 Quantifoil 2µm dia x 1µm 200 mesh Cu 100 pack G310/2N/50 Quantifoil 2µm dia x 1µm 200 mesh Ni 50 pack G310/2N/100 Quantifoil 2µm dia x 1µm 200 mesh Ni 100 pack **G310/2G/50** Quantifoil 2µm dia x 1µm **200** mesh *Au* 50 pack G310/2G/100 Quantifoil 2µm dia x 1µm 200 mesh Au 100 pack **G310/3C/50** Quantifoil 2µm dia x 1µm **300** mesh *Cu* 50 pack G310/3C/100 Quantifoil 2µm dia x 1µm 300 mesh Cu 100 pack **G310/3N/50** Quantifoil 2µm dia x 1µm **300** mesh *Ni* 50 pack G310/3N/100 Quantifoil 2µm dia x 1µm 300 mesh Ni 100 pack **G310/3G/50** Quantifoil 2µm dia x 1µm **300** mesh *Au* 50 pack G310/3G/100 Quantifoil 2µm dia x 1µm 300 mesh Au 100 pack

G310/4C/50 Quantifoil 2µm dia x 1µm **400** mesh *Cu* 50 pack G310/4C/100 Quantifoil 2µm dia x 1µm 400 mesh Cu 100 pack **G310/4N/50** Quantifoil 2µm dia x 1µm **400** mesh *Ni* 50 pack G310/4N/100 Quantifoil 2µm dia x 1µm 400 mesh Ni 100 pack **G310/4G/50** Quantifoil 2µm dia x 1µm **400** mesh *Au* 50 pack G310/4G/100 Quantifoil 2µm dia x 1µm 400 mesh Au 100 pack

Quantifoil® Holey Carbon Films with **2µm holes** separated by 1µm spaces

Quantifoil R 2/2

G302/2C/50 Quantifoil 2um dia x 2um **200** Mesh *Cu* 50 pack G302/2C/100 Quantifoil 2um dia x 2µm 200 Mesh Cu 100 pack **G302/2N/50** Quantifoil 2um dia x 2um **200** Mesh *Ni* 50 pack G302/2N/100 Quantifoil 2um dia x 2um 200 Mesh Ni 100 pack **G302/2G/50** Quantifoil 2um dia x 2um **200** Mesh *Au* 50 pack G302/2G/100 Quantifoil 2um dia x 2um 200 Mesh Au 100 pack


G302/3C/50 Quantifoil 2um dia x 2um **300** Mesh *Cu* 50 pack **G302/3C/100** Quantifoil 2um dia x 2um **300** Mesh *Cu* 100 pack **G302/3N/50** Quantifoil 2um dia x 2um **300** Mesh *Ni* 50 pack G302/3N/100 Quantifoil 2um dia x 2um 300 Mesh Ni 100 pack **G302/3G/50** Quantifoil 2um dia x 2um **300** Mesh *Au* 50 pack **G302/3G/100** Quantifoil 2um dia x 2um **300** Mesh *Au* 100 pack

G302/4C/50 Quantifoil 2um dia x 2um **400** Mesh *Cu* 50 pack G302/4C/100 Quantifoil 2um dia x 2um 400 Mesh Cu 100 pack **G302/4N/50** Quantifoil 2um dia x 2um **400** Mesh *Ni* 50 pack G302/4N/100 Quantifoil 2um dia x 2um 400 Mesh Ni 100 pack **G302/4G/50** Quantifoil 2um dia x 2um **400** Mesh *Au* 50 pack **G302/4G/100** Quantifoil 2um dia x 2um **400** Mesh *Au* 100 pck

Phone: +44 (0) 118 981 7775

Quantifoil® Holey Carbon Films with 2µm holes separated by 2µm spaces

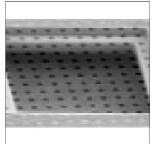
E-mail: sales@taab.co.uk

Please ask for our data sheet

1

Grids & Specimen Supports

Quantifoil R 2/4

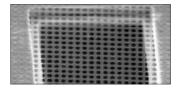

G303/2C/50 Quantifoil 2um dia x 4um 200 Mesh *Cu* 50 pack G303/2C/100 Quantifoil 2um dia x 4um 200 Mesh *Cu* 100 pack G303/2N/50 Quantifoil 2um dia x 4um 200 Mesh *Ni* 50 pack G303/2N/100 Quantifoil 2um dia x 4um 200 Mesh *Ni* 100 pack G303/2G/50 Quantifoil 2um dia x 4um 200 Mesh *Au* 50 pack G303/2G/100 Quantifoil 2um dia x 4um 200 Mesh *Au* 100 pack

G303/3C/100 Quantifoil 2um dia x 4um 300 Mesh *Cu* 100 pack G303/3N/50 Quantifoil 2um dia x 4um 300 Mesh *Ni* 50 pack G303/3N/100 Quantifoil 2um dia x 4um 300 Mesh *Ni* 100 pack G303/3G/50 Quantifoil 2um dia x 4um 300 Mesh *Au* 50 pack G303/3G/100 Quantifoil 2um dia x 4um 300 Mesh *Au* 100 pack

G303/3C/50 Quantifoil 2um dia x 4um **300** Mesh *Cu* 50 pack

G303/4C/50 Quantifoil 2um dia x 4um 400 Mesh *Cu* 50 pack G303/4C/100 Quantifoil 2um dia x 4um 400 Mesh *Cu* 100 pack G303/4N/50 Quantifoil 2um dia x 4um 400 Mesh *Ni* 50 pack G303/4N/100 Quantifoil 2um dia x 4um 400 Mesh *Ni* 100 pack G303/4G/50 Quantifoil 2um dia x 4um 400 Mesh *Au* 50 pack G303/4G/100 Quantifoil 2um dia x 4um 400 Mesh *Au* 100 pack

Quantifoil® Holey Carbon Films with 2µm holes separated by 4µm spaces

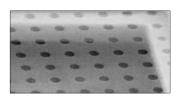

Quantifoil R 3.5/1

G304/2C/50 Quantifoil 3.5µm dia x 1µm 200 Mesh *Cu* 50 pack G304/2C/100 Quantifoil 3.5µm dia x 1µm 200 Mesh *Cu* 100 pack G304/2N/50 Quantifoil 3.5µm dia x 1µm 200 Mesh *Ni* 50 pack G304/2N/100 Quantifoil 3.5µm dia x 1µm 200 Mesh *Ni* 100 pack G304/2G/50 Quantifoil 3.5µm dia x 1µm 200 Mesh *Au* 50 pack G304/2G/100 Quantifoil 3.5µm dia x 1µm 200 Mesh *Au* 100 pack

G304/3C/50 Quantifoil 3.5μm dia x 1μm 300 Mesh *Cu* 50 pack G304/3C/100 Quantifoil 3.5μm dia x 1μm 300 Mesh *Cu* 100 pck G304/3N/50 Quantifoil 3.5μm dia x 1μm 300 Mesh *Ni* 50 pack G304/3N/100 Quantifoil 3.5μm dia x 1μm 300 Mesh *Ni* 100 pck G304/3G/50 Quantifoil 3.5μm dia x 1μm 300 Mesh *Au* 50 pack G304/3G/100 Quantifoil 3.5μm dia x 1μm 300 Mesh *Au* 100 pck

G304/4C/50 Quantifoil 3.5μm dia x 1μm 400 Mesh *Cu* 50 pack G304/4C/100 Quantifoil 3.5μm dia x 1μm 400 Mesh *Cu* 100 pck G304/4N/50 Quantifoil 3.5μm dia x 1μm 400 Mesh *Ni* 50 pack G304/4N/100 Quantifoil 3.5μm dia x 1μm 400 Mesh *Ni* 100 pck G304/4G/50 Quantifoil 3.5μm dia x 1μm 400 Mesh *Au* 50 pack G304/4G/100 Quantifoil 3.5μm dia x 1μm 400 Mesh *Au* 100 pck

Quantifoil® Holey Carbon Films with 3.5µm holes separated by 1µm spaces

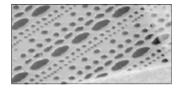

Quantifoil R 5/20

G305/2C/50 Quantifoil 5 μ m dia x 20 μ m 200 Mesh Cu 50 pack G305/2C/100 Quantifoil 5 μ m dia x 20 μ m 200 Mesh Cu 100 pack G305/2N/50 Quantifoil 5 μ m dia x 20 μ m 200 Mesh Ni 50 pack G305/2N/100 Quantifoil 5 μ m dia x 20 μ m 200 Mesh Ni 100 pack G305/2G/50 Quantifoil 5 μ m dia x 20 μ m 200 Mesh Au 50 pack G305/2G/100 Quantifoil 5 μ m dia x 20 μ m 200 Mesh Au 100 pack

G305/3C/50 Quantifoil $5\mu m$ dia \times $20\mu m$ 300 Mesh Cu 50 pack G305/3C/100 Quantifoil $5\mu m$ dia \times $20\mu m$ 300 Mesh Cu 100 pck G305/3N/50 Quantifoil $5\mu m$ dia \times $20\mu m$ 300 Mesh Ni 50 pack G305/3N/100 Quantifoil $5\mu m$ dia \times $20\mu m$ 300 Mesh Ni 100 pck G305/3G/50 Quantifoil $5\mu m$ dia \times $20\mu m$ 300 Mesh Au 50 pack G305/3G/100 Quantifoil $5\mu m$ dia \times $20\mu m$ 300 Mesh Au 100 pck

G305/4C/50 Quantifoil $5\mu m$ dia \times $20\mu m$ 400 Mesh Cu 50 pack G305/4C/100 Quantifoil $5\mu m$ dia \times $20\mu m$ 400 Mesh Cu 100 pck G305/4N/50 Quantifoil $5\mu m$ dia \times $20\mu m$ 400 Mesh Ni 50 pack G305/4N/100 Quantifoil $5\mu m$ dia \times $20\mu m$ 400 Mesh Ni 100 pck G305/4G/50 Quantifoil $5\mu m$ dia \times $20\mu m$ 400 Mesh Au 50 pack G305/4G/100 Quantifoil $5\mu m$ dia \times $20\mu m$ 400 Mesh Au 100 pck

Quantifoil® Holey Carbon Films with 5µm holes separated by 20µm spaces

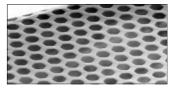

Quantifoil Multi A

G306/2C/50 Quantifoil Multi A 200 Mesh *Cu* 50 pack G306/2C/100 Quantifoil Multi A 200 Mesh *Cu* 100 pack G306/2N/50 Quantifoil Multi A 200 Mesh *Ni* 50 pack G306/2N/100 Quantifoil Multi A 200 Mesh *Ni* 100 pack

G306/3C/50 Quantifoil Multi A 300 Mesh *Cu* 50 pack G306/3C/100 Quantifoil Multi A 300 Mesh *Cu* 100 pck G306/3N/50 Quantifoil Multi A 300 Mesh *Ni* 50 pack G306/3N/100 Quantifoil Multi A 300 Mesh *Ni* 100 pack

G306/4C/50 Quantifoil Multi A **400** Mesh *Cu* 50 pack **G306/4C/100** Quantifoil Multi A **400** Mesh *Cu* 100 pck **G306/4N/50** Quantifoil Multi A **400** Mesh *Ni* 50 pack **G306/4N/100** Quantifoil Multi A **400** Mesh *Ni* 100 pack

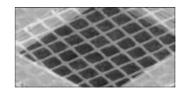
Quantifoil® Holey Carbon Films with different hole sizes and patterns



Quantifoil Hex15

G307/Hex15/C/50 Quantifoil hexagonal mesh on 0.5 x 2mm slot grids Cu 50 pack **G307/Hex15/C/100** Quantifoil hexagonal mesh on 0.5 x 2mm slot grids Cu 100 pack

Quantifoil® Hexagonal on slot grid 0.5 x 2mm For section support giving greatest open area Hole size 26μm


Bar width 15µm repeat distance 41µm

Quantifoil® with Square Holes on copper, nickel and gold grids

Quantifoil S 7/2

G308/C/S72/50 Quantifoil S 7/2 square 7 x 7µm holes Cu 50 pack G308/C/S72/100 Quantifoil S 7/2 square 7 x 7µm holes Cu 100 pack G308/N/S72/50 Quantifoil S 7/2 square 7 x 7µm holes Ni 50 pack G308/N/S72/100 Quantifoil S 7/2 square 7 x 7µm holes Ni 100 pack G308/G/S72/50 Quantifoil S 7/2 square 7 x 7µm holes Au 50 pack G308/G/S72/100 Quantifoil S 7/2 square 7 x 7µm holes Au 100 pck

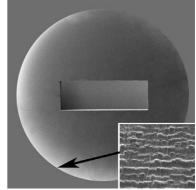
Quantifoil® with **square holes** and **narrow bars** can be used in TEM to support a thin carbon film which by itself is too fragile to span a grid square. Alternatively, this holey film can directly support an object that is larger than the holes.

Quantifoil® MixBox

The MixBox contains 5 pieces each of the following on 300 mesh copper grids

R 1.2/1.3 R 2/1 R 3.5/1 S 7/2 Multi A

G309 Quantifoil® MixBox


Phone: +44 (0) 118 981 7775 Fax: +44 (0) 118 981 7881 E-mail: sales@taab.co.uk www.taab.co.uk

Silicon Nitride (Si₃N₄) Thin Film Windows for Microscopy

TAAB introduces a new generation of Silicon Nitride Support Films for EM imaging and analysis from Ted Pella. These resilient, ultra-smooth low stress inorganic silicon nitride support films have been developed as an addition to our available range of TEM support films to enable specific nanotechnology and molecular biology research. Each window has an EasyGrip™ edge.

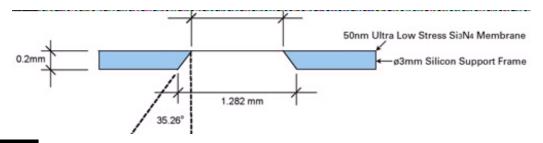
Silicon nitride support films have the great advantages of being chemically and mechanically robust and are able to withstand temperature changes up to 1000°C. They are extremely stable and suitable to conduct a variety of nanotechnology experiments with particles or cells mounted directly on the support films. They have greatly improved handling capabilities with EasyGrip™ edges. The frame is manufactured as a 3mm x 200µm silicon disc and will fit perfectly in standard TEM holders.

Each Silicon Nitride Support Film is manufactured with a 3mm diameter structure compatible with TEM grids and is completely free from debris particles. The purpose designed packaging and clean room assembly and packaging keeps the support films free from artefacts and contamination. The mechanical and chemical stability allow for cleaning of the silicon nitride support films with chemicals (solvents, acids and bases), glow discharge and plasma cleaning. Ultrasonic cleaning is not recommended as it may shatter the silicon nitride membrane.

Examples of Application Fields

EasyGrip™ Edge

The Silicon Nitride Support Films are indispensable tools for virtually all fields of nanotechnology research. They enable direct deposition and in-situ observations of dynamic reactions over a wide temperature range. Applications fields include, but are not limited to:


- Cell biology: attached cells can be grown in their environment on the support film and subsequently analysed
- · Analysis of colloids, aerosols, nanoparticles
- Self-assembled mono-layers
- Polymer research
- Thin film research (directly deposited on the silicon nitride support film)
- · Materials science
- Properties of nano-structures for semiconductor devices
- Semiconductor; characterisation of thin films
- Catalyst development

These superior Silicon nitride support films are made by state-of-the-art semiconductor and MEMS fabrication techniques using resilient, low-stress inorganic silicon nitride thin films supported by a sturdy silicon frame. The thin silicon nitride film is grown on a $200\mu m$ thick silicon wafer to the desired membrane thickness of 50nm. The specimen viewing area is created by etching away a window in the silicon wafer substrate underneath the Si_3N_4 membrane, leaving a perfectly smooth, resilient and chemically robust silicon nitride film. The membrane is not supported in the window area, enabling large viewing areas without any disturbing bars. A new addition is Hydrophobic and Hydrophilic Substrates for Nanotechnology and Biotechnology applications. The 50nm membranes have been Atomic Layer-Deposited (ALD) modified to created these surfaces.

Window sizes and shape Three window sizes are available with a 50nm thin support on 3mm Ø frame:

- 0.5 x 05mm sturdy and most cost effective
- 1 x 1 mm larger area, but more fragile
- 1.5 x 0.5mm, sturdy for large viewing area or tomography

Due to the structure of the silicon and the etching process the window in the silicon substrate is etched with a 35° angle, leaving a much larger opening than the membrane window at the back side of the frame.

Silicon Nitride Windows Continued...

Effects on tilt

Due to the 35° etching angle the Si_3N_4 support films on the frames can be tilted to 35° for unobstructed viewing, even if the specimen is close to the edge of the membrane. For higher tilting angles, the specimen needs to be in the centre of the membrane. To allow for the highest possible tilt angle a window size of 1.5×0.5 mm has been made available which allows for tilting angles up to 70° with a viewable area of 40° . Maximum tilt angle with a specimen in the centre is 75° .

Surface Roughness: The RMS (Rq) is 0.65 +/- 0.06nm which gives a mean roughness (Ra) of 0.45 +/- 0.02nm. **Packaging:** The Silicon Nitride Support Films are packaged under cleanroom conditions in a TEM Grid Storage Box. Each box holds 10 support films.

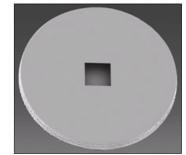
SXXX Silicon Nitride Window, 50nm thick, 0.5mm square window pack 10

SXXX Silicon Nitride Window, 50nm thick, 0.5mm square pack 100

SXXX Silicon Nitride Window, 50nm thick, 1.0mm square pack 10

SXXX Silicon Nitride Window, 50nm thick, 1.0mm square pack 100

SXXX Silicon Nitride Window, 50nm thick, 0.5 x 1.5mm pack of 10


SXXX Silicon Nitride Window, 50nm thick, 0.5 x 1.5mm pack of 100

Hydrophobic and Hydrophilic Silicon Nitride Membrane Surfaces

50nm Silicon Nitride membranes have been Atomic Layer-Deposited (ALD) modified to change their properties. Depending on the process used both Hydrophobic and Hydrophilic substrates have been created with the following advantages:

- Choice between low and high surface energies
- Smooth and conformal substrates
- Enhanced wetting and biocompatibility (hydrophilic)
- Removes need for plasma treatment of surface prior to cell growth
- Hydrophobic coating offers novel platform for deposition and growth of nanomaterials Available on 50nm silicon nitride membrane with a window size of 0.5 x 0.5mm on a 200um silicon frame with a diameter of 3mm. Compatible with all standard TEM grid holders.

SXXX Hydrophilic 50nm Silicon Nitride Membrane 0.5 x 0.5mm window pack of 10

Silicon Nitride Aperture Discs - No Film

These Silicon Nitride Aperture Discs are 3mm disc type frames with a thickness of $200\mu m$ and square or rectangular apertures. They have found a variety of applications:

Support frame to attach TEM lamellas made with FIB Support frame for thin films, foils, wires and fibres Mask for thin film research (deposition mask)

SXXXSilicon nitride aperture disc 0.5 x 0.5mm pck 10 **SXXX**Silicon nitride aperture disc 1.0 x 1.0mm pck 10 **SXXX**Silicon nitride aperture disc 1.5 x 0.5mm pck 10

Silicon Nitride 3mm Blank Discs

These 3mm silicon discs have a 50nm ultra low stress silicon nitride layer (Si_3N_4) on both sides and can be used for a number of applications:

Specimen mounts for SEM and FESEM applications Specimen disks for AFM applications which need a Si₃N₄ background

SXXX Silicon nitride 3mm blank discs pack of 10

1.37